ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
Objective To compare the cl inical outcomes of the core decompression combined with autologous bone marrow mesenchymal stem cells (BMSCs) transplantation with the isolated core decompression for the treatment of earlyavascular necrosis of the femoral head (ANFH). Methods From May 2006 to October 2008, 8 patients (16 hips) with earlyANFH were treated. There were 7 males and 1 female with an average age of 35.7 years (range, 19-43 years). According to the system of the Association Research Circulation Osseous (ARCO): 4 hips were classified as stage II a, 2 as stage II b, 1 as stage II c, and 1 as stage III a in group A; 2 hips were classified as stage II a, 2 as stage II b, 3 as stage II c, and 1 as stage III a in group B. The average disease course was 1.1 years (range, 4 months to 2 years). The patients were randomly divided into 2 groups according to left or right side: group A, only the core decompression was used; group B, both the core decompression and autologous BMSCs transplantation were used. The Harris score and visual analogue scale (VAS) score were determined, imaging evaluation was carried out by X-rays and MRI pre- and post-operatively. The erythrocyte sedimentation rate, C-reactive protein, l iver function, renal function, and immunoglobul in were detected for safety evaluation. Results All incisions healed by first intention. Eight patients were followed up 12-42 months (23.5 months on average). The cl inical symptoms of pain and claudication were gradually improved. The Harris scores and VAS scores of all patients were increased significantly at 3, 6, and 12 months after operation (P lt; 0.05). There was no significant difference between groups A and B 3 and 6 months after operation (P gt; 0.05), but there was significant difference between groups A and B 12 months after operation (P lt; 0.05). The necrosis area of femoral head in groups A and B were 18.13% ± 2.59% and 13.25% ± 2.12%, respectively, showing significant difference (P lt; 0.05). In group A, femoral head collapsed 12 months after operation in 1 case of stage III. No compl ication of fever, local infectionoccurred. Conclusion The core decompression and the core decompression combined with BMSCs transplantation are both effective for the treatment of early ANFH. The core decompression combined with BMSCs transplantation is better than core decompression in the rel ief of pain and postponing head collapse.
ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.
ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.
ObjectiveTo investigate the mechanism of G protein coupled receptor kinase interacting protein 1 (GIT1) affecting angiogenesis by comparing the differentiation of bone marrow mesenchymal stem cells (BMSCs) differentiated into endothelial cells between GIT1 wild type mice and GIT1 gene knockout mice.MethodsMale and female GIT1 heterozygous mice were paired breeding, and the genotypic identification of newborn mice were detected by PCR. The 2nd generation BMSCs isolated from GIT1 wild type mice or GIT1 gene knockout mice were divided into 4 groups, including wild type control group (group A), wild type experimental group (group A1), GIT1 knockout control group (group B), and GIT1 knockout experimental group (group B1). The cells of groups A1 and B1 were cultured with the endothelial induction medium and the cells of groups A and B with normal cluture medium. The expressions of vascular endothelial growth factor receptor 2 (VEGFR-2), VEGFR-3, and phospho-VEGFR-2 (pVEGFR-2), and pVEGFR-3 proteins were detected by Western blot. The endothelial cell markers [von Willebrand factor (vWF), platelet-endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial cadherin (VE-Cadherin)] were detected by flow cytometry. The 2nd generation BMSCs of GIT1 wild type mice were divided into 4 groups according to the different culture media: group Ⅰ, primary cell culture medium; group Ⅱ, cell culture medium containing SAR131675 (VEGFR-3 blocker); group Ⅲ, endothelial induction medium; group Ⅳ, endothelial induction medium containing SAR131675. The endothelial cell markers (vWF, PECAM-1, and VE-Cadherin) in 4 groups were also detected by flow cytometry.ResultsWestern blot results showed that there was no obviously difference in protein expressions of VEGFR-2 and pVEGFR-2 between groups; and the expressions of VEGFR-3 and pVEGFR-3 proteins in group A1 were obviously higher than those in groups A, B, and B1. The flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group A1 than in groups A, B, and B1 (P<0.05), and in group B1 than in groups A and B (P<0.05); but no significant difference was found between groups A and B (P>0.05). In the VEGFR-3 blocked experiment, the flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group Ⅲ than in groupsⅠ, Ⅱ, and Ⅳ, and in group Ⅳ than in groups Ⅰ and Ⅱ (P<0.05); but no significant difference was found between groups Ⅰ and Ⅱ (P>0.05).ConclusionGIT1 mediates BMSCs of mice differentiation into endothelial cells via VEGFR-3, thereby affecting the angiogenesis.
ObjectiveTo investigate the possibility and effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in repair of neurological deficit after traumatic brain injury (TBI) in rats.MethodsBMSCs were isolated, cultured, and passaged by the method of bone marrow adherent culture. The 3rd generation BMSCs were identified by the CD29 and CD45 surface antigens and marked by 5-bromo-2-deoxyuridine (BrdU). The chitosan porous scaffolds were produced by the method of freeze-drying. The BrdU-labelled BMSCs were co-cultured in vitro with chitosan porous scaffolds, and were observed by scanning electron microscopy. MTT assay was used to observe the cell growth within the scaffold. Fifty adult Sprague Dawley rats were randomly divided into 5 groups with 10 rats in each group. The rat TBI model was made in groups A, B, C, and D according to the principle of Feeney’s free fall combat injury. Orthotopic transplantation was carried out at 72 hours after TBI. Group A was the BMSCs and chitosan porous scaffolds transplantation group; group B was the BMSCs transplantation group; group C was the chitosan porous scaffolds transplantation group; group D was the complete medium transplantation group; and group E was only treated with scalp incision and skull window as sham-operation group. Before TBI and at 1, 7, 14, and 35 days after TBI, the modified neurological severity scores (mNSS) was used to measure the rats’ neurological function. The Morris water maze tests were used after TBI, including the positioning voyage test (the incubation period was detected at 31-35 days after TBI, once a day) and the space exploration test (the number of crossing detection platform was detected at 35 days after TBI). At 36 days after TBI, HE staining and immunohistochemistry double staining [BrdU and neurofilament triplet H (NF-H) immunohistochemistry double staining, and BrdU and glial fibrillary acidic protein (GFAP) immunohistochemistry double staining] were carried out to observe the transplanted BMSCs’ migration and differentiation in the damaged brain areas.ResultsFlow cytometry test showed that the positive rate of CD29 of the 3rd generation BMSCs was 98.49%, and the positive rate of CD45 was only 0.85%. After co-cultured with chitosan porous scaffolds in vitrofor 48 hours, BMSCs were spindle-shaped and secreted extracellular matrix to adhere in the scaffolds. MTT assay testing showed that chitosan porous scaffolds had no adverse effects on the BMSCs’ proliferation. At 35 days after TBI, the mNSS scores and the incubation period of positioning voyage test in group A were lower than those in groups B, C, and D, and the number of crossing detection platform of space exploration test in group A was higher than those in groups B, C, and D, all showing significant differences (P<0.05); but no significant difference was found between groups A and E in above indexes (P>0.05). HE staining showed that the chitosan porous scaffolds had partially degraded, and they integrated with brain tissue well in group A; the degree of repair in groups B, C, and D were worse than that of group A. Immunohistochemical double staining showed that the transplanted BMSCs could survive and differentiate into neurons and glial cells, some differentiated neural cells had relocated at the normal brain tissue; the degree of repair in groups B, C, and D were worse than that of group A.ConclusionThe transplantation of chitosan porous scaffolds combined with BMSCs can improve the neurological deficit of rats following TBI obviously, and also inhabit the glial scar’s formation in the brain damage zone, and can make BMSCs survive, proliferate, and differentiate into nerve cells in the brain damage zone.
ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.
ObjectiveTo investigate the effect of microencapsulated transgenic bone marrow mesenchymal stem cells (BMSCs) transplantation on early steroid induced osteonecrosis of femoral head (SONFH) in rabbits.MethodsAlginate poly-L-lysine-sodium alginate (APA) microencapsulated transgenic BMSCs with high expression of Foxc2 were prepared by high-voltage electrostatic method. Part of the cells were cultured in osteoblasts and observed by alizarin red staining at 2 and 3 weeks. Forty New Zealand white rabbits were used to prepare SONFH models by using hormone and endotoxin. Thirty two rabbits who were successful modeling were screened out by MRI and randomly divided into 4 groups (groups A, B, C and D, n=8); another 6 normal rabbits were taken as normal control (group E). The rabbits in group A did not receive any treatment; and in groups B, C, and D were injected with normal saline, allogeneic BMSCs, and APA microencapsulated transgenic BMSCs respectively after core decompression. At 6 and 12 weeks after operation, specimens of femoral head were taken for HE staining to observe bone ingrowth; the expressions of osteocalcin (OCN), peroxisome proliferative activated receptor γ 2 (PPARγ-2), and vascular endothelial growth factor (VEGF) proteins were observed by immunohistochemistry staining. At 12 weeks after operation, the bone microstructure was observed by transmission electron microscope, and the maximum compressive strength and average elastic modulus of cancellous bone and subchondral bone were measured by biomechanics.ResultsAfter 2 and 3 weeks of induction culture, alizarin red staining showed the formation of calcium nodules, and the number of calcium nodules increased at 3 weeks when compared with 2 weeks. The rabbits in each group survived until the experiment was completed. Compared with groups A, B, and C, the trabeculae of group D were more orderly, the empty bone lacunae were less, there were abundant functional organelles, and obvious osteogenesis was observed, and the necrotic area was completely repaired at 12 weeks. Immunohistochemical staining showed that, at 6 and 12 weeks after operation, the expressions of OCN and VEGF in groups A, B, and C were significantly lower than those in groups D and E, while those in groups B and C were significantly higher than those in group A, and in group E than in group D (P<0.05). The expression of PPARγ-2 was significantly higher in groups A, B, and C than in groups D and E, and in group A than in groups B and C, and in group D than in group E (P<0.05). At 12 weeks after operation, biomechanical test showed that the average elastic modulus and maximum compressive strength of cancellous bone and subchondral bone in groups D and E were significantly higher than those in groups A, B, and C (P<0.05); there was no significant difference between groups A, B, and C and between groups D and E (P>0.05).ConclusionIn vivo transplantation of microencapsulated transgenic BMSCs can repair early SONFH in rabbits.
This study aimed to comprehensively evaluate the biological activity in different passage populations of mesenchymal stem cells (BMSCs) derived from bone marrow in ovariectomy osteoporotic rats (named OVX-rBMSCs), providing experimental basis for new osteoporotic drug development and research. OVX-rBMSCs were isolated and cultured in vitro by the whole bone marrow adherent screening method. The morphological observation, cell surface markers (CD29, CD45, CD90) detection, cell proliferation, induced differentiation experimental detection were performed to evaluate the biological activity of Passage 1, 2, 3, 4 populations (P1, P2, P3, P4) OVX-rBMSCs. The results showed that whole bone marrow adherent culture method isolated and differentially subcultured OVX-The morphology of P4 OVX-rBMSCs was identical fibroblast-like and had the characteristics of ultrastructure of stem cells. The CD29 positive cells rate, CD90 positive cells rate, cell proliferation index, and the osteogenic, adipogenic, chondrogenic differentiation capacities of P4 OVX-rBMSCs were significantly better than those of other populations (P < 0.05). OVX-rBMSCs purity and biological activity were gradually optimized with the passaged, and among them P4 cells were superior to all the other populations. Based on these results, we report that the P4 OVX-rBMSCs model developed in this study can be used to develop a new and effective medical method for osteoporotic drug screening.
ObjectiveTo observe the change of stromal cell-derived factor 1α/cysteine X cysteine receptor 4 (SDF-1α/CXCR4) signaling pathway during the process of axial stress stimulation promoting bone regeneration, and to further explore its mechanism.MethodsA total of 72 male New Zealand white rabbits were selected to prepare the single cortical bone defect in diameter of 8 mm at the proximal end of the right tibia that repaired with deproteinized cancellous bone. All models were randomly divided into 3 groups (n=24). Group A was treated with intraperitoneally injection of PBS; Group B was treated with stress stimulation and intraperitoneally injection of PBS; Group C was treated with stress stimulation and intraperitoneally injection of AMD3100 solution. The X-ray films were taken and Lane-Sandhu scores of bone healing were scored at 2, 4, 8, and 12 weeks after operation, while specimens were harvested for HE staining, immunohistochemical staining of vascular endothelial growth factor (VEGF) and CXCR4, and Western blot (SDF-1α and CXCR4). The bone healing area was scanned by Micro-CT at 12 weeks after operation, and the volume and density of new bone were calculated.ResultsX-ray film showed that the Lane-Sandhu scores of bone healing in group B were significantly higher than those in groups A and C at 4, 8, and 12 weeks after operation (P<0.05). Micro-CT scan showed that the bone defect was repaired in group B and the pulp cavity was re-passed at 12 weeks after operation. The volume and density of new bone were higher in group B than in groups A and C (P<0.05). HE staining showed that the new bone growth in bone defect area and the degradation of scaffolds were faster in group B than in groups A and C after 4 weeks. The immunohistochemical staining showed that the expressions of VEGF and CXCR4 in 3 groups reached the peak at 4 weeks, and group B was higher than groups A and C (P<0.05). Western blot analysis showed that the expressions of SDF-1α and CXCR4 in group B were significantly higher than those in groups A and C at 4 and 8 weeks after operation (P<0.05).ConclusionAxial stress stimulation can promote the expression of SDF-1α in bone defect tissue, activate and regulate the CXCR4 signal collected by marrow mesenchymal stem cells, and accelerate bone regeneration in bone defect area.