ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.
Objective To investigate the improvement effects and mechanisms of composite chitosan (CS) hydrogel on traditional polypropylene (PP) mesh for repairing abdominal wall defects. Methods CS hydrogel was prepared via physical cross-linking and then combined with PP mesh to create a CS hydrogel/PP mesh composite. The internal structure and hydrophilicity of the composite were characterized using macroscopic observation, upright metallographic microscope, scanning electron microscopy, and water contact angle measurements. The performance of the composite (experimental group) in resisting cell adhesion and supporting cell infiltration was assessed through fibroblast (NIH-3T3) infiltration experiments and human umbilical vein endothelial cells (HUVECs) tube formation assays, and simple cells were used as control group. Finally, a bilateral abdominal wall defect model (1.5 cm×1.0 cm) was established in 18 Sprague Dawley rats aged 8-10 weeks, with the composite used on one side (experimental group) and PP mesh on the other side (control group). The effects on promoting wound healing, preventing adhesion, angiogenesis, and anti-inflammation were investigated through macroscopic observation, histological staining (HE and Masson staining), and immunohistochemical staining (CD31, CD68). Results The composite appeared as a pale yellow, transparent solid with a thickness of 2-3 mm, with the PP mesh securely encapsulated within the hydrogel. Scanning electron microscopy revealed that the hydrogel contained interconnected pores measuring 100-300 μm, forming a porous structure. Contact angle measurements indicated that CS hydrogel exhibited good hydrophilicity, while PP mesh was highly hydrophobic. In vitro cell culture experiments showed that DAPI staining indicated fewer positive cells in the experimental group after 1 day of culture, while the cells in control group covered the entire well plate. After 3 days of culture, the cells in experimental group were spherical and displayed uneven fluorescence, suggesting that the material could reduce cell adhesion while supporting cell infiltration. HUVECs tube formation experiments demonstrated an increase in cell numbers in experimental group with a trend towards tube formation, while cells in control group were sparsely distributed and showed no migration. In the rat abdominal wall defect repair experiment, results showed that after 1 week post-surgery, the experimental group had tissue and blood vessels infiltrating, and by 4 weeks, the integrity was well restored with significant regeneration of muscle and blood vessels, while the control group exhibited adhesions and incomplete healing. HE staining results indicated weaker cell infiltration in the experimental group, with cell density significantly higher than that of the control group at 2 and 4 weeks post-surgery (P<0.05). Masson staining revealed that collagen fibers in the experimental group were arranged neatly, with significantly increased collagen content at 2 weeks post-surgery (P<0.05), while collagen content was similar in both groups at 4 weeks (P>0.05). Immunohistochemical staining showed that CD31-positive cells were evenly distributed between muscle layers in the experimental group, whereas the control group exhibited notable defects. At 2 weeks after operation, the CD31-positive cell ratio was significantly higher than that in the control group (P<0.05); at 2 and 4 weeks after operation, the CD68-positive cell ratio in the experimental group was significantly lower than that in the control group (P<0.05). Conclusion CS hydrogel has a positive effect on preventing adhesions and promoting wound healing, exhibiting anti-inflammatory and pro-angiogenic properties during the healing process. This provides a promising strategy to address challenges related to abdominal adhesions and reconstruction.
Objective To study the effect of water soluble chitosan (WSC) on the apoptosis of peritoneal macrophage induced by lipopolysaccharides (LPS), and discuss the mechanism. Methods Peritoneal macrophages were divided to three groups: phosphate buffered saline (PBS) group, LPS group and LPS plus WSC group. At hour 24, apoptosis cell and active caspase-3 were detected by flow cytometry; nitric oxide (NO) was determined with Griess reagent. Results There were more apoptosis cells in the LPS group than the PBS group. The percentage of apoptosis cells was significantly decreased in the LPS plus WSC group than the LPS group. The expression of active caspase-3 and the secretion of NO were also inhibited by WSC after LPS intervention. Conclusion WSC inhibits apoptosis of peritoneal macrophage induced by LPS.
Objective To construct a ultraviolet-cross-linkable chitosan-carbon dots-morin (NMCM) hydrogel, observe whether it can repair cartilage injury by in vivo and in vitro experiments, and explore the related mechanism. Methods The chitosan was taken to prepare the ultraviolet (UV)-cross-linkable chitosan by combining methacrylic anhydride, and the carbon dots by combining acrylamide. The two solutions were mixed and added morin solution. After UV irradiation, the NMCM hydrogel was obtained, and its sustained release performance was tested. Chondrocytes were separated from normal and knee osteoarticular (KOA) cartilage tissue donated by patients with joint replacement and identified by toluidine blue staining. The 3rd generation KOA chondrocytes were co-cultured with the morin solutions with concentrations of 12.5, 25.0, 50.0 µmol/L and NMCM hydrogel loaded with morin of the same concentrations, respectively. The effects of morin and NMCM hydrogel on the proliferation of chondrocytes were detected by cell counting kit 8 (CCK-8). After co-cultured with NMCM hydrogel loaded with 50 µmol/L morin, the level of collagen type Ⅱ (COL-Ⅱ) of KOA chondrocytes was detected by immunofluorescence staining, and the level of reactive oxygen species (ROS) was detected by 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. Twenty 4-week old Sprague Dawley rats were selected to construct a articular cartilage injury of right hind limb model, and were randomly divided into two groups (n=10). The cartilage injury of the experimental group was repaired with NMCM hydrogel loaded with 25 µmol/L morin, and the control group was not treated. At 4 weeks after operation, the repair of cartilage injury was observed by micro-CT and gross observation and scored by the International Cartilage Repair Association (ICRS) general scoring. The cartilage tissue and subchondral bone tissue were observed by Safranine-O-fast green staining and COL-Ⅱ immunohistochemistry staining and scored by ICRS histological scoring. The expressions of tumor necrosis factor α (TNF-α), nuclear factor κB (NK-κB), matrix metalloproteinase 13 (MMP-13), and COL-Ⅱ were detected by Western blot and real-time fluorescence quantitative PCR. Results NMCM hydrogels loaded with different concentrations of morin were successfully constructed. The drug release rate was fast in a short period of time, gradually slowed down after 24 hours, and the amount of drug release was close to 0 at 96 hours. At this time, the cumulative drug release rate reached 88%. Morin with a concentration ≤50 µmol/L had no toxic effect on chondrocytes, and the proliferation of chondrocytes improved under the intervention of NMCM hydrogel (P<0.05). NMCM hydrogel loaded with morin could increase the level of COL-Ⅱ in KOA chondrocytes (P<0.05) and reduce the level of ROS (P<0.05), but it did not reach the normal level (P<0.05). Animal experiments showed that in the experimental group, the articular surface was rough and the defects were visible at 4 weeks after operation, but the surrounding tissues were repaired and the joint space remained normal; in the control group, the articular surface was rougher, and no repair tissue was found for cartilage defects. Compared with the control group, the experimental group had more chondrocytes, increased COL-Ⅱ expression, and higher ICRS gross and histological scores (P<0.05); the relative expressions of MMP-13, NF-κB, and TNF-α protein and mRNA significantly decreased (P<0.05), and the relative expressions of COL-Ⅱ protein/COL-2a1 mRNA significantly increased (P<0.05). Conclusion NMCM hydrogel can promote chondrocytes proliferation, down regulate chondrocyte catabolism, resist oxidative stress, protect chondrocytes from cartilage injury, and promote cartilage repair.
Objective To improve the flexibil ity and hemostatic properties of chitosan (CS)/carboxymethyl chitosan (CMCS) hemostatic membrane by using glycerol and etamsylate to modify CS/CMCS hemostatic membrane. To investigate themechanical properties and hemostatic capabil ity of modified CS/CMCS hemostatic membrane. Methods The 2% CS solution, 2% CMCS solution, 10%, 15%, 20%, 25%, 30% glycerol with or without 0.5% etamsylate were used to prepare CS/CMCS hemostatic membrane with or without etamsylate by solution casting according to ratio of 16 ∶ 4 ∶ 5. The tensile properties were evaluated by tensile test according to GB 13022-1991. Twenty venous incisions and five arterial incisions hemorrhage of 1 cm × 1 cm in rabbit ears were treated by CS/CMCS hemostatic membrane modified by 15% (group A) and 25% (group B) of glycerol, and a combination of them and 0.5% etamsylate (groups C and D). The bleeding time and blood loss were recorded. Results The pH of yellow CS/ CMCS hemostatic membrane with thickness of 30-50 μm was 3-4. The incorporation glycerol into CS/CMCS hemostatic membrane resulted in decreasing in tensile strength (7.6%-60.2%) and modulus (97%-99%). However, elongation at break and water content increased 5.7-11.6 times and 13%-125% markedly. CS/CMCS hemostatic membrane adhered to wound rapidly, absorbed water from blood and became curly. The bleeding time and blood loss of venous incisions were (70 ± 3) seconds and (117.2 ± 10.8) mg, (120 ± 10) seconds and (121.2 ± 8.3) mg, (52 ± 4) seconds and (98.8 ± 5.5) mg, and (63 ± 3) seconds and (90.3 ± 7.1) mg in groups A, B, C, and D, respectively; showing significant differences (P lt; 0.05) between groups A, B and groups C, D. The bleeding time and blood loss of arterial incision were (123 ± 10) seconds and (453.3 ± 30.0) mg in group C. Conclusion CS/CMCS hemostatic membrane modified by glycerol and etamsylate can improve the flexibil ity, and shorten the bleeding time.
Objective To investigate the effects of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) conjugated chitosan (CS) (NNSCS) mediated the transfection of microRNA-140 (miR-140) in rabbit articular chondrocytes in vitro. Methods Recombinant plasmid GV268-miR-140 and empty plasmid GV268 were combined with NNSCS to form NNSCS/pDNA complexes, respectively. Chondrocytes were isolated and cultured through trypsin and collagenase digestion from articular cartilage of newborn New Zealand white rabbits. The second generation chondrocytes were divided into 3 intervention groups: normal cell control group (group A), NNSCS/GV268 empty plasmid transfection group (group B), and NNSCS/GV268-miR-140 transfection group (group C). NNSCS/GV268 and NNSCS/GV268-miR- 140 complexes were transiently transfected into cells of groups B and C. After transfection, real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expressions of exogenous miR-140; Annexin Ⅴ-FITC/PI double staining and MTT assay were used to detect the effect of exogenous miR-140 on apoptosis and proliferation of transfected chondrocytes; the expressions of Sox9, Aggrecan, and histone deacetylase 4 (Hdac4) were detected by RT-qPCR. Results RT-qPCR showed that the expression of miR-140 in group C was significantly higher than that in groups A and B (P<0.05). Compared with groups A and B, the apoptosis rate in group C was decreased and the proliferation activity was improved, Sox9 and Aggrecan gene expressions were significantly up-regulated, and Hdac4 gene expression was significantly down-regulated (P<0.05). There was no significant difference in above indexes between groups A and B (P>0.05). Conclusion Exogenous gene can be carried into the chondrocytes by NNSCS and expressed efficiently, the high expression of miR-140 can improve the biological activity of chondrocytes cultured in vitro, which provides important experimental basis for the treatment of cartilage damage diseases.
Objective To explore the effect of chitosan (CS) hydrogel loaded with tendon-derived stem cells (TDSCs; hereinafter referred to as TDSCs/CS hydrogel) on tendon-to-bone healing after rotator cuff repair in rabbits. Methods TDSCs were isolated from the rotator cuff tissue of 3 adult New Zealand white rabbits by Henderson step-by-step enzymatic digestion method and identified by multidirectional differentiation and flow cytometry. The 3rd generation TDSCs were encapsulated in CS to construct TDSCs/CS hydrogel. The cell counting kit 8 (CCK-8) assay was used to detect the proliferation of TDSCs in the hydrogel after 1-5 days of culture in vitro, and cell compatibility of TDSCs/CS hydrogel was evaluated by using TDSCs alone as control. Another 36 adult New Zealand white rabbits were randomly divided into 3 groups (n=12): rotator cuff repair group (control group), rotator cuff repair+CS hydrogel injection group (CS group), and rotator cuff repair+TDSCs/CS hydrogel injection group (TDSCs/CS group). After establishing the rotator cuff repair models, the corresponding hydrogel was injected into the tendon-to-bone interface in the CS group and TDSCs/CS group, and no other treatment was performed in the control group. The general condition of the animals was observed after operation. At 4 and 8 weeks, real-time quantitative PCR (qPCR) was used to detect the relative expressions of tendon forming related genes (tenomodulin, scleraxis), chondrogenesis related genes (aggrecan, sex determining region Y-related high mobility group-box gene 9), and osteogenesis related genes (alkaline phosphatase, Runt-related transcription factor 2) at the tendon-to-bone interface. At 8 weeks, HE and Masson staining were used to observe the histological changes, and the biomechanical test was used to evaluate the ultimate load and the failure site of the repaired rotator cuff to evaluate the tendon-to-bone healing and biomechanical properties. Results CCK-8 assay showed that the CS hydrogel could promote the proliferation of TDSCs (P<0.05). qPCR results showed that the expressions of tendon-to-bone interface related genes were significantly higher in the TDSCs/CS group than in the CS group and control group at 4 and 8 weeks after operation (P<0.05). Moreover, the expressions of tendon-to-bone interface related genes at 8 weeks after operation were significantly higher than those at 4 weeks after operation in the TDSCs/CS group (P<0.05). Histological staining showed the clear cartilage tissue and dense and orderly collagen formation at the tendon-to-bone interface in the TDSCs/CS group. The results of semi-quantitative analysis showed that compared with the control group, the number of cells, the proportion of collagen fiber orientation, and the histological score in the TDSCs/CS group increased, the vascularity decreased, showing significant differences (P<0.05); compared with the CS group, the proportion of collagen fiber orientation and the histological score in the TDSCs/CS group significantly increased (P<0.05), while there was no significant difference in the number of cells and vascularity (P>0.05). All samples in biomechanical testing failed at the repair site during the testing process. The ultimate load of the TDSCs/CS group was significantly higher than that of the control group (P<0.05), but there was no significant difference compared to the CS group (P>0.05). Conclusion TDSCs/CS hydrogel can induce cartilage regeneration to promote rotator cuff tendon-to-bone healing.
Objective To explore a green route for the fabrication of thermo-sensitive chitosan nerve conduits, improve the mechanical properties and decrease the degradation rate of the chitosan nerve conduits. Methods Taking advantage of the ionic specific effect of the thermo-sensitive chitosan, the strengthened chitosan nerve conduits were obtained by immersing the gel-casted conduits in salt solution for ion-induced phase transition, and rinsing, lyophilization, and 60Co sterilization afterwards. The nerve conduits after immersing in NaCl solutions for 0, 4, 12, 24, 36, 48, and 72 hours were obtained and characterized the general observation, diameters and mechanical properties. According to the above results, the optimal sample was chosen and characterized the microstructure, degradation properties, and cytocompatibility. The left sciatic nerve defect 15 mm in length was made in 20 male Sprague Dawley rats. The autologous nerves (control group, n=10) and the nerve conduits (experimental group, n=10) were used to repair the defects. At 8 weeks after operation, the compound muscle action potential (CMAP) was measured. The regenerated nerves were investigated by gross observation and toluidine blue staining. The gastrocnemius muscle was observed by HE staining. Results With the increased ionic phase transition time, the color of the conduit was gradually deepened and the diameter was gradually decreased, which showed no difference during 12 hours. The tensile strength of the nerve conduit was increased gradually. The ultimate tensile strength showed significant difference between the 48 hours and 12, 24, and 36 hours groups (P<0.05), and no significant difference between the 48 hours and 72 hours groups (P>0.05). As a result, the nerve conduit after ion-induced phase transition for 48 hours was chosen for further study. The scanning electron microscope (SEM) images showed that the nerve conduit had a uniform porous structure. The degradation rate of the the nerve conduit after ion-induced phase transition for 48 hours was significantly decreased as compared with that of the conduit without ion-induced phase transition. The nerve conduit could support the attachment and proliferation of rat Schwann cells on the inner surface. The animal experiments showed that at 8 weeks after operation, the CMAPs of the experimental and control groups were (3.5±0.9) and (4.3±1.1) m/V, respectively, which showed no significant difference between the two groups (P<0.05), and were significantly lower than that of the contralateral site [(45.6±5.6 m/V), P>0.05]. The nerve conduit of the experimental group could repair the nerve defect. There was no significant difference between the experimental and control groups in terms of the histomorphology of the regenerated nerve fibers and the gastrocnemius muscle. Conclusion The green route for the fabrication of thermo-sensitive chitosan nerve conduits is free of any toxic reagents, and has simple steps, which is beneficial to the industrial transformation of the chitosan nerve conduit products. The prepared chitosan nerve conduit can be applied to rat peripheral nerve defect repair and nerve tissue engineering.
Objective To investigate the ectopic bone formation of the chitosan/phosphonic chitosan sponge combined with human umbil ical cord mesenchymal stem cells (hUCMSCs) in vitro. Methods Phosphorous groups were introduced in chitosan molecules to prepare the phosphonic chitosan; 2% chitosan and phosphonic chitosan solutions were mixed at a volume ratio of 1 ∶ 1 and freeze-dried to build the complex sponge, and then was put in the simulated body fluid for biomimetic mineral ization in situ. The hUCMSCs were isolated by enzyme digestion method from human umbil ical cord and were cultured. The chitosan/phosphonic chitosan sponge was cultured with hUCMSCs at passage 3, and the cell-scaffoldcomposite was cultured in osteogenic medium. The growth and adhesion of the cells on the scaffolds were observed by l ight microscope and scanning electron microscope (SEM) at 1 and 2 weeks after culturing, respectively. The cell prol iferation was detected by MTT assay at 1, 2, 3, 4, 5, and 6 days, respectively. Bilateral back muscles defects were created on 40 New Zealand rabbits (3-4 months old, weighing 2.1-3.2 kg, male or female), which were divided into groups A, B, and C. In group A, cellscaffold composites were implanted into 40 right defects; in group B, the complex sponge was implanted into 20 left defects; and in group C, none was implanted into other 20 left defects. The gross and histological observations were made at 4 weeks postoperatively. Results The analysis results of phosphonic chitosan showed that the phosphorylation occurred mainly in the hydroxyl, and the proton type and chemical shifts intensity were conform to its chemical structure. The SEM results showed that the pores of the chitosan/phosphonic chitosan sponge were homogeneous, and the wall of the pore was thinner; the coating of calcium and phosphorus could be observed on the surface of the pore wall after mineral ized with crystal particles; the cells grew well on the surface of the chitosan/phosphonic chitosan sponge. The MTT assay showed that the chitosan/phosphonic chitosan sponge could not inhibit the prol iferation of hUCMSCs. The gross observation showed that the size and shape of the cell-scaffold composite remained intact and texture was toughened in group A, the size of the complex sponge gradually reducedin group B, and the muscle defects wound healed with a l ittle scar tissue in group C. The histological observation showed that part of the scaffold was absorbed and new blood vessels and new bone trabeculae formed in group A, the circular cavity and residual chitosan scaffolds were observed in group B, and the wound almost healed with a small amount of lymphocytes in group C. Conclusion The chitosan/phosphonic chitosan sponge has good biocompatibil ity, the tissue engineered bone by combining the hUCMSCs with chitosan/phosphonic chitosan sponge has the potential of the ectopic bone formation in rabbit.
Objective To investigate the hemostasis of thermosensitive chitosan hemostatic film. Methods Fifty adult Sprague Dawley rats, male or female and weighing 190-210 g, were made the models of liver injury. The models were randomly divided into 5 groups (n=10) depending on different hemostatic materials. The incision of the liver was covered with the hemostatic materials of 2.0 cm × 1.0 cm × 0.5 cm in size: thermosensitive chitosan hemostatic film (group A), chitosan hemostatic film (group B), cellulose hemostatic cotton (group C), gelatin sponge (group D), and no treatment (group E), respectively. The bleeding time and bleeding amount were recorded. After 4 weeks, the incisions of the liver were observed with HE staining. Results Gross observation showed better hemostatic effect and faster hemostatic time in groups A, B, and C; group D had weaker hemostatic effect and slower hemostatic time; group E had no hemostatic effect. The bleeding time and bleeding amount of groups A, B, C, and D were significantly lower than those of group E (P lt; 0.05). The bleeding time and bleeding amount of groups A, B, and C were significantly lower than those of group D (P lt; 0.05), but no significant difference was found among groups A, B, and C (P gt; 0.05). The liver cells of group A had milder edema and ballooning degeneration than other 4 groups through histological observation. Conclusion The thermosensitive chitosan hemostatic film has good hemostasis effect on the liver incision of rats.