Objective To determine whether the different durations and times of the ischemic preconditioning affect the effectiveness of the ischemic preconditioning. Methods Ninety male Wistar rats were randomly divided into the control group and the eight preconditioned groups of 10 rats each. A transverse rectus abdominis musculocutaneous flap (TRAM) was elevated in each rat. The flaps were preconditioned by clamping the pedicle and reperfusing for 5 or 10 minutes per cycle. This was repeated for one or two cycles. The controls were simply perfused for 30 minutes. Each flap was then subjected to 4 hours of the global ischemia. Three rats in each group were killed for anestimate of the water content in the muscle and for observation on the muscularstructure under microscope. The flap surface survival areas of the other rats were calculated on the 7th postoperative day by the computerized video planimetry. Results The water content in the muscle was evidently reduced. The mean survival area of the flap in every preconditioned group increased by2-3 times compared with that of the controls(P<0.001). The different proceduresof the ischemic preconditioning produced different protective effects. Conclusion The ischemic preconditioning is an available means to alleviate an ischemiareperfusion injury to the transverse rectus abdominis musculocutaneous flap in rats. The effect of the ischemic preconditioning is affected by the duration and time of the ischemic preconditioning.
OBJECTIVE To understand the biological activities of the nerve regeneration conditioned fluid (NRCF). METHODS Nerve regeneration chamber was made by using silicone tube bridging distal and proximal ends of severed SD rat’s sciatic nerve. The biological activities of the proteins in NRCF, which were separated by natural polyacrylamide gel electrophoresis (PAGE), were analysed by being cocultured with excised neonatal dorsal root ganglia (DRG). RESULTS Eight separated protein bands of NRCF were observed between 67-669 ku in molecular weight, and the protein bands between 232-440 ku showed b neurotrophic and chemotactic function. CONCLUSION NRCF has the promoting effects on nerve regeneration.
Objective To study the biological activities ofthe nerve regeneration conditioned fluid (NRCF), especially to further separateand identify the protein bands of the relative molecular mass of (232-440)×103. Methods The silicone nerve regeneration chambers were implanted between the cut ends of the sciatic nerve in 6 New Zealand white rabbits (weight, 1.8-2.5 kg). The proteins in NRCF were separated by the native-polycrylamide gel electrophoresis (Native-PAGE), the protein bands of the relative molecular mass of (232-440)×103 were analyzed by the Shotgun technique, liquid chromatography, and mass spectrometry. Results The Native-PAGE result showed that there was 1 protein band of the relative molecular mass over 669×103, (232-440)×103 and (140-232)×103,respectively, and 6 bands of the relative molecular mass of (67-140)×103.Besides, 54 proteins were identified with at least 2 distinct peptides in 1 protein band of the relative molecular mass of (232-440)×103, including 4 unnamed protein products, mainly at the isoelectric points of 5.5-8.0 and of the relative molecular mass of (10-40)×103. Based on their functions in the protein database, allthe identified proteins in this study were classified into the following 5 groups: conjugated protein (43%), transport protein (30%), enzyme (6%), signal transducer (4%), and molecular function-unknown protein (17%). At the subcellular localization of the identified proteins, there was mainly a secreted protein (63%), and the remaining proteins were localized in the membrane and cytoplasm. Conclusion Native-PAGE and the Shotgun technique can effectively separate and identify proteins from NRCF, and can identify the components of the protein band of the relative molecular mass of (232-440)×103 and provide basicinformation on the unnamed protein products in NRCF.
【Abstract】 Objective To study the effects of ischemic preconditioning (IP) on the activity of nuclear factor-κB (NF-κB) and the expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1) during early reperfusion following liver transplantation in rats. Methods The models of rat orthotopic liver transplantation were established. The donor livers were stored for 2 hours in Ringers solution at 4 ℃ before transplantation. All rats were randomly divided into sham operation group (SO group), control group and IP group. IP group was achieved by clamping the portal vein and hepatic artery of donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The activity of NF-κB and expressions of TNF-α and ICAM-1 at 1 h, 2 h, 4 h and 6 h after reperfusion were measured. Serum ALT, LDH were also determined. Results The liver function of recipients with IP were significantly improved. Compared with SO group, the graft NF-κB activity increased after transplantation in control group and IP group (P<0.05), while compared with control group that was significantly attenuated at 1 h and 2 h in IP group. Similarly, hepatic levels of TNF-α and ICAM-1 were significantly elevated in control group and were reduced in IP group. Conclusion IP might down-regulated TNF-α and ICAM-1 expression in the grafts after orthotopic liver transplantation through depressed NF-κB activation, and attenuate neutrophil infiltration in the grafts after reperfusion.
Objective To study the effect of rat osteoblast conditioned culture medium on the BMSCs differentiation of allogeneic rat and to find a new approach to provide seed cells for bone tissue engineering. Methods BMSCs and osteoblasts were harvested from 10 healthy one-week-old SD rats (male and female, weighing 20-30 g) by adherent method and enzyme digestion method respectively. Cell identification was conducted. Osteoblast conditioned culture medium was prepared by mixing supernatant of osteoblasts at passage 1-5 with complete medium (1:1). Then, BMSCs at passage 2 were co-cultured with osteoblast conditioned culture medium (inducement group) and complete medium (control group), respectively. The morphological changes of co-cultured BMSCs were observed by inverted phase contrast microscope, the growth condition of BMSCs was detected by MTT method, the expressions of ALP, Col I and osteocalcin (OCN) in the cocultured BMSCs were tested by immunohistochemistry staining, and the expressions of Col I and OCN mRNA were detected by RT-PCR. Results In the inducement group, BMSCs grew bigger, changing from long fusiform to flat and polygon with protuberance 7 days after co-culture; the presence of cell colony-l ike growth was observed 9 days after co-culture. Cell growth curve demonstrated that the counts of BMSCs was increased with time, there were more cells in the control group than that of the inducement group, and there was a significant difference in cell counts between the control and the inducement group 4-7 days after co-culture (P lt; 0.05). For the inducement group, ALP staining was positive 12 days after co-culture, the calcium nodules were appeared 18 days after co-culture, Col I and OCN were positive 21 days after co-culture, and the expressions of Col I and OCN mRNA were detected by RT-PCR 21 days after co-culture. Conclusion Rat osteoblast conditioned culture medium can significantly induce the differentiation of allogeneic rats’ BMSCs towards osteoblasts.
Objective To investigate the protective effect of ischemic preconditioning (IP) on ischemicreperfusion injury of rat liver graft. MethodsMale Sprague Dawley rats were used as donors and recipients of orthotopic liver transplantation,the period of cold preservation and anhepatic phase were 100 min and 25 min respectively.Sixtyfour rats were randomly divided into 2 groups (n=32),control group: donor livers were flushed through the portal veins with physiological saline solution containing heparin only before harvested; IP group: before donor livers were harvested,the portal veins and hepatic arteries of them were interrupted for 10 min,and reflow was initiated for another 10 min,then did as control group.One half of each group were used to investigate 1 week survival rate of recipients,and another half of each group were used to take sample of blood and hepatic tissue after 2 hours of reperfusion of liver graft. ResultsOne week survival rate,amount of bile,serum NO and activity of antioxidase were higher in IP group than those in control group(P<0.05),meanwhile,serum ALT,AST,LDH,TNF and superoxide in hepatic tissue were lower in IP group than those in control group (P<0.05),and histological findings in IP group showed less injury than those in control group. Conclusion IP could increase production of serum NO,reduce the level of serum TNF and protect rat liver graft from ischemicreperfusion injury.
【Abstract】Objective To study the mechanisms of enhancing effect of mild hypothermia (MH) to ischemic preconditioning (IP) on hepatic ischemiareperfusion (I-R) injury. Methods To observe the content of the marker enzymes of liver damage (ALT,AST,LDH) and malondialdehyde (MDA), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPX), total antioxidase (TAX) in inferior vena cava blood above liver in nonischemic control group (n=6), I-R group (n=6), IP group (n=6) and mild hypothermic ischemic preconditioning (MHIP) group (n=6). Results After I-R the content of ALT,AST, LDH and MDA were significantly elevated (P<0.01), SOD,CAT,GSH-PX,ACT activities were declined obviously (P<0.01). The content of ALT,AST,LDH and MDA were significantly lower in IP group than those in I-R group, and in MHIP group than those in IP group (P<0.01,P<0.05), and the content of SOD, CAT,GSH-PX, ACT activities were significantly higher in IP group than those in I-R group, and in MHIP group than those in IP group (P<0.01,P<0.05). Conclusion Ischemic preconditioning may enhance the oxidation-resistance of liver, and reduce the oxygen free radical injury to liver after ischemia-reperfusion. Mild hypothermia may enhance the protective effect of IP on hepatic ischemiareperfusion injury.
Objective To study the protective effects of ischemic preconditioning(IP) duration against ischemic reperfusion injury of skeletal muscle. Methods Thirty-six Wister rats were made amputation-like models, which underwent temporary amputation at the level of the femur, excluding the femoral vessels. They were divided into 6 groups(n=6) according to different treatments before ischemiareperfusion: group A(4 hours of ischemiareperfusion); groups B, C, D, E(5, 10,15, 20 minutes of ischemia and 5, 10, 15, 20 minutes of reperfusion respectively, for 3 cycles, 4 hours ischemiareperfusion ); group F (no ischemia-reperfusion). The malondialdehyde(MDA), the extent of edema and necrosis of skeletal muscle were measured to observe protective effects of different ischemic preconditioning duration. Results Five minutes of ischemic preconditioning(IP5)could protect skeletal muscle of ischaemia against necrosis and the survival area of the muscle was 82.47%.The effects of IP10 and IP 15 were significantly superior to that of IP5 and the survival areas of the muscle were 89.03% and 89.49%. The effect of IP20(78.27%) was significantly inferior to that IP5. IP5 could reduce edema of skeletal muscle, the effect of IP10 was significantly superior to that of IP5. IP5, IP 10,and IP 15 could decrease the level of MDA, but IP20 did not decrease it. Conclusion The trend of protective effect of IP on ischemia-reperfusion injury of themuscle in rats first rise to the peak and then go down,10minutes ofIPis optimal.
Abstract: Objective To investigate the effects of calcium preconditioning (CP) on immature myocardial cell apoptosis and apoptosisregulated proteins. Methods The experiment was carried out from June 2000 to December 2001 in the Renmin Hospital of Wuhan University. Twelve rabbits with the age of 1421 d and the weight of 230300 g were divided into 2 groups with 6 in each group by random digital table. For rabbits in the ischemia/reperfusion group (I/R group), after Langendorff models were routinely set up, KrebsHenseleit (KH) solution was perfused for 20 minutes and reperfused for 120 minutes after 45 minutes of ischemia. For rabbits in the CP group, after Langendorff models were established, KH solution was perfused for20 minutes, and 45 seconds’ noncalcium KH solution perfusion and 5 minutes’ KH solution perfusion were repeated 3 times before 45 minutes of ischemia and 120 minutes of reperfusion of KH solution. In situ apoptosis identification and semiquantitative analysis were used to detect the myocardial cell apoptosis; agarose gel electrophoresis was used to detect the nucleosomal ladder of DNA fragments; and the expression of bcl-2, bax and fas were detected with Western blot method. Results The apoptosis rate for the CP group was lower than that of the I/R group (4.53%±1.22% vs. 12.30%±2.12%,t=7.780, P=0.000). Nucleosomal ladder of DNA fragments of the CP group was lower than that of the I/R group (OD value: 56 460±1 640 vs. 135 212±3 370,t=51.460,P=0.000). The expression of bcl-2 in the I/R group was lower than that of the CP group (OD value: 13 217±1 770 vs. 31 790±1 018,t=22.280, P=0.000). The expression of bax (OD value: 30 176±1 025 vs. 7 954±730, t=43.260, P=0.000) and fas (OD value: 29 197±1 233 vs. 8 140±867, t=34.220, P=0.000) in the I/R group was higher than that of the CP group. Conclusion CP can affect the expression of myocardial bcl-2, bax, and fas, and decrease immature myocardial cell apoptosis.
Abstract: Ischemia postconditioning is a new concept based on ischemic preconditioning. It has become a hot topic in protection of ischemic-reperfusion injury because of its effective protection, relative ease of application, and postconditioning. However, its precise mechanisms and most effective application methods are still unclear. This review covers recent progress in the understanding, developments (in remote postconditioning and pharmacological postconditioning), applications to the protection of heart, lung, liver, kidney, and brain, mechanisms and appropriate protocol of ischemic post-conditioning.