Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
Using LabVIEW programming and highspeed multifunction data acquisition card PCI6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments.
The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.
Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones.
The detection of electrocardiogram (ECG) characteristic wave is the basis of cardiovascular disease analysis and heart rate variability analysis. In order to solve the problems of low detection accuracy and poor real-time performance of ECG signal in the state of motion, this paper proposes a detection algorithm based on segmentation energy and stationary wavelet transform (SWT). Firstly, the energy of ECG signal is calculated by segmenting, and the energy candidate peak is obtained after moving average to detect QRS complex. Secondly, the QRS amplitude is set to zero and the fifth component of SWT is used to locate P wave and T wave. The experimental results show that compared with other algorithms, the algorithm in this paper has high accuracy in detecting QRS complex in different motion states. It only takes 0.22 s to detect QSR complex of a 30-minute ECG record, and the real-time performance is improved obviously. On the basis of QRS complex detection, the accuracy of P wave and T wave detection is higher than 95%. The results show that this method can improve the efficiency of ECG signal detection, and provide a new method for real-time ECG signal classification and cardiovascular disease diagnosis.
In the extraction of fetal electrocardiogram (ECG) signal, due to the unicity of the scale of the U-Net same-level convolution encoder, the size and shape difference of the ECG characteristic wave between mother and fetus are ignored, and the time information of ECG signals is not used in the threshold learning process of the encoder’s residual shrinkage module. In this paper, a method of extracting fetal ECG signal based on multi-scale residual shrinkage U-Net model is proposed. First, the Inception and time domain attention were introduced into the residual shrinkage module to enhance the multi-scale feature extraction ability of the same level convolution encoder and the utilization of the time domain information of fetal ECG signal. In order to maintain more local details of ECG waveform, the maximum pooling in U-Net was replaced by Softpool. Finally, the decoder composed of the residual module and up-sampling gradually generated fetal ECG signals. In this paper, clinical ECG signals were used for experiments. The final results showed that compared with other fetal ECG extraction algorithms, the method proposed in this paper could extract clearer fetal ECG signals. The sensitivity, positive predictive value, and F1 scores in the 2013 competition data set reached 93.33%, 99.36%, and 96.09%, respectively, indicating that this method can effectively extract fetal ECG signals and has certain application values for perinatal fetal health monitoring.
In this paper, a heart rate variability analysis system is presented for short-term (5 min) applications, which is composed of an electrocardiogram signal acquisition unit and a heart rate variability analysis unit. The electrocardiogram signal acquisition unit adopts various digital technologies, including the low-gain amplifier, the high-resolution analog-digital converter, the real-time digital filter and wireless transmission etc. Meanwhile, it has the advantages of strong anti-interference capacity, small size, light weight, and good portability. The heart rate variability analysis unit is used to complete the R-wave detection and the analyses of time domain, frequency domain and non-linear indexes, based on the Matlab Toolbox. The preliminary experiments demonstrated that the system was reliable, and could be applied to the heart rate variability analysis at resting, motion states. etc.
Based on the capacitance coupling principle, we studied a capacitive way of non-contact electrocardiogram (ECG) monitoring, making it possible to obtain ECG on the condition that a patient is habilimented. Conductive fabric with a good electrical conductivity was used as electrodes. The electrodes fixed on a bed sheet is presented in this paper. A capacitance comes into being as long as the body gets close to the surface of electrode, sandwiching the cotton cushion, which acts as dielectric. The surface potential generated by heart is coupled to electrodes through the capacitance. After being processed, the signal is suitable for monitoring. The test results show that 93.5% of R wave could be detected for 9 volunteers and ECG with good signal quality could be acquired for 2 burnt patients. Non-contact ECG is harmless to skin, and it has advantages for those patients to whom stickup electrodes are not suitable. On the other hand, it is convenient to use and good for permanent monitoring.
Artery stiffness is a main factor causing the various cardiovascular diseases in physiology and pathology. Therefore, the development of the non-invasive detection of arteriosclerosis is significant in preventing cardiovascular problems. In this study, the characterized parameters indicating the vascular stiffness were obtained by analyzing the electrocardiogram (ECG) and pulse wave signals, which can reflect the early change of vascular condition, and can predict the risk of cardiovascular diseases. Considering the coupling of ECG and pulse wave signals, and the association with atherosclerosis, we used the ECG signal characteristic parameters, including RR interval, QRS wave width and T wave amplitude, as well as the pulse wave signal characteristic parameters (the number of peaks, 20% main wave width, the main wave slope, pulse rate and the relative height of the three peaks), to evaluate the samples. We then built an assessment model of arteriosclerosis based on Adaptive Network-based Fuzzy Interference System (ANFIS) using the obtained forty sets samples data of ECG and pulse wave signals. The results showed that the model could noninvasively assess the arteriosclerosis by self-learning diagnosis based on expert experience, and the detection method could be further developed to a potential technique for evaluating the risk of cardiovascular diseases. The technique will facilitate the reduction of the morbidity and mortality of the cardiovascular diseases with the effective and prompt medical intervention.
In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.