The directed functional connectivity in cerebral cortical is the key to understanding the pattern of the behavioral tissue. This process was studied to explore the directed functional network of rifle shooters at cerebral cortical rhythms from electroencephalogram (EEG) data, aiming to provide neurosciences basis for the future development of accelerating rifle skill learning method. The generalized orthogonalized partial directed coherence (gOPDC) algorithm was used to calculate the effective directed functional connectivity of the experts and novices in the pre-shot period. The results showed that the frontal, frontal-central, central, parietal and occipital regions were activated. Moreover, the more directed functional connections numbers in right hemispheres were observed compared to the left hemispheres. Furthermore, as compared to experts, novices had more activated regions, the stronger strength of connections and the lower value of the global efficiency during the pre-shot period. Those indirectly supported the conclusion that the novices needed to recruit more brain resources to accomplish tasks, which was consistent with " neural efficiency” hypothesis of the functional cerebral cortical in experts.
Using the computer to imitate the neural oscillations of the brain is of great significance for the analysis of brain functions. Thalamocortical neural mass model (TNMM) reflects the mechanisms of neural activities by establishing the relationships between the thalamus and the cortex, which contributes to the understanding of some specific cognitive functions of the brain and the neural oscillations of electroencephalogram (EEG) rhythms. With the increasing complexity and scale of neural mass model, the performance of conventional computer system can not achieve rapid and large-scale model simulation. In order to solve this problem, we proposed a computing method based on Field Programmable Gate Array (FPGA) hardware in this study. The Altera's DSP Builder module combined with MATLAB/Simulink was used to achieve the construction of complex neural mass model algorithm, which is transplanted to the FPGA hardware platform. This method takes full advantage of the ability of parallel computing of FPGA to realize fast simulation of large-scale and complex neural mass models, which provides new solutions and ideas for computer implementation of neural mass models.
Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant (P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant (P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region (P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS (P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant (P < 0.05), and there was no significant difference in sham tDCS (P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.
Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.
The incidence of tinnitus is very high, which can affect the patient’s attention, emotion and sleep, and even cause serious psychological distress and suicidal tendency. Currently, there is no uniform and objective method for tinnitus detection and therapy, and the mechanism of tinnitus is still unclear. In this study, we first collected the resting state electroencephalogram (EEG) data of tinnitus patients and healthy subjects. Then the power spectrum topology diagrams were compared of in the band of δ (0.5–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (31–50 Hz) to explore the central mechanism of tinnitus. A total of 16 tinnitus patients and 16 healthy subjects were recruited to participate in the experiment. The results of resting state EEG experiments found that the spectrum power value of tinnitus patients was higher than that of healthy subjects in all concerned frequency bands. The t-test results showed that the significant difference areas were mainly concentrated in the right temporal lobe of the θ and α band, and the temporal lobe, parietal lobe and forehead area of the β and γ band. In addition, we designed an attention-related task experiment to further study the relationship between tinnitus and attention. The results showed that the classification accuracy of tinnitus patients was significantly lower than that of healthy subjects, and the highest classification accuracies were 80.21% and 88.75%, respectively. The experimental results indicate that tinnitus may cause the decrease of patients’ attention.
Sleep apnea syndrome (SAS) is a kind of common and harmful systemic sleep disorder. SAS patients have significant iconography changes in brain structure and function, and electroencephalogram (EEG) is the most intuitive parameter to describe the sleep process which can reflect the electrical activity and function of brain tissues. Based on the non-stationary and nonlinear characteristics of EEG, this paper analyzes the correlation dimension of sleep EEG in patients with SAS. Six SAS patients were classed as SAS group and six healthy persons were classified into a control group. The results showed that the correlation dimension of sleep EEG in the SAS group and the control group decreased gradually with the deepening of sleep, and then increased to the level of awake and light sleep stage with rapid eye movement (REM). The correlation dimension of SAS group was significantly lower than that of control group (P<0.01) throughout all the stages. The results suggested that there were significant nonlinear dynamic differences between the EEG signals of SAS patients and of healthy people, which provided a new direction for the study of the physiological mechanism and automatic detection of SAS.
ObjectiveTo explore the application effect of standardized management on video-electroencephalogram (VEEG) monitoring.MethodsIn January 2018, a multidisciplinary standardized management team composed with doctors, technicians, and nurses was established. The standardized management plan for VEEG monitoring from outpatient, pre-hospital appointment, hospitalization and post-discharge follow-up was developed; the special quilt for epilepsy patients was designed and customized, braided for the patient instead of shaving head, standardized the work flow of the staff, standardized the health education of the patients and their families, and standardized the quality control of the implementation process. The standardized managemen effect carried out from January to December 2018 (after standardized managemen) was compared with the management effect from January to December 2017 (before standardized managemen).ResultsAfter standardized management, the average waiting time of patients decreased from (2.08±1.13) hours to (0.53±0.21) hours, and the average hospitalization days decreased from (6.63±2.54) days to (6.14±2.17) days. The pass rate of patient preparation increased from 63.14% to 90.09%. The capture rate of seizure onset increased from 73.37% to 97.08%. The accuracy of the record increased from 33.12% to 94.10%, the doctor’s satisfaction increased from 76.34±29.53 to 97.99±9.27, and the patient’s satisfaction increased from 90.04±18.97 to 99.03±6.51. The difference was statistically significant (P<0.05).ConclusionStandardization management is conducive to ensuring the homogeneity of clinical medical care, reducing the average waiting time and the average hospitalization days, improving the capture rate and accuracy of seizures, ensuring the quality of medical care and improving patient’s satisfaction.
The study of brain information flow is of great significance to understand brain function in the field of neuroscience. The Granger causality is widely used functional connectivity analysis using multivariate autoregressive model based on the predicted mechanism. High resolution electroencephalogram (EEG) signals of ten healthy subjects were collected with a visual selective attention task. Firstly, independent component analysis was used to extract three spatially independent components of the occipital, parietal, and frontal cortices. Secondly, the Granger causal connectivity was computed between these three regions based on the Granger causality method and then independent sample t-test and bootstrap were used to test the significance of connections. The results showed that Granger causal connectivity existed from frontal to occipital and from parietal to occipital in attentional condition, while causal connectivity from frontal to occipital disappeared in unattentional condition.
Electroencephalogram(EEG) analysis has important reference value in the diagnosis of epilepsy. The automatic classification of epileptic EEG can be used to judge the patient’s situation in time,which is of great significance in clinical application. In order to solve the problem that the recognition accuracy is not high by using the single feature of EEG signals and avoid the influence of wavelet basis function selection on recognition results,a method of automatic discrimination of epileptic EEG signals based on S transform and permutation entropy is proposed. Firstly, the original signals are decomposed by discrete S transform, and then we calculate the fluctuation index of coefficients of each rhythm and combine the permutation entropy of EEG signals into a feature vector and use Real AdaBoost classifier to discriminate the epileptic EEG signals in muti-period. In this study, we used the epilepsy database from University of Bonn. Three groups of EEG signals, including the data of normal people with their eyes open, the data collected inside of the epileptic foci from patients during their interictal period and the data during their ictal period, were used to test effectiveness. The results of this study showed that the fluctuation index of each rhythm could be used to characterize the normal, interictal and ictal epileptic EEG signals effectively, and the recognition accuracy of multiple features was much higher than that of single feature. The average recognition accuracy could reach 98.13%. Compared with time-frequency feature extraction method or nonlinear feature extraction method only,the recognition accuracy was increased by more than 1.2% and 8.1% respectively, which was superior to the methods recorded in many other literatures. Therefore, this method has a good application prospect in diagnosis of epilepsy.
In the present paper, the contribution of the largest principal component and the number of principal component needed for accumulative contribution 95% are selected as indices of electroencephalogram (EEG) in mental fatigue state in order to investigate the relationship between these parameters and mental fatigue. The experimental results showed that the contribution of the largest principal component of EEG signals increased in the prefrontal, frontal and central areas, while the number of principal component needed for accumulative contribution decreased by 95% with the increasing mental fatigue level. The parameters of singular system of EEG signals can be regarded as useful features for the estimation of mental fatigue and have larger application value in the study of mental fatigue.