west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "electroencephalogram" 103 results
  • Recognition of fatigue status of pilots based on deep contractive auto-encoding network

    We proposed a new deep learning model by analyzing electroencephalogram signals to reduce the complexity of feature extraction and improve the accuracy of recognition of fatigue status of pilots. For one thing, we applied wavelet packet transform to decompose electroencephalogram signals of pilots to extract the δ wave (0.4–3 Hz), θ wave (4–7 Hz), α wave (8–13 Hz) and β wave (14–30 Hz), and the combination of them was used as de-nosing electroencephalogram signals. For another, we proposed a deep contractive auto-encoding network-Softmax model for identifying pilots' fatigue status. Its recognition results were also compared with other models. The experimental results showed that the proposed deep learning model had a nice recognition, and the accuracy of recognition was up to 91.67%. Therefore, recognition of fatigue status of pilots based on deep contractive auto-encoding network is of great significance.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Motor Imagery Electroencephalogram Feature Selection Algorithm Based on Mutual Information and Principal Component Analysis

    Aiming at feature selection problem of motor imagery task in brain computer interface (BCI), an algorithm based on mutual information and principal component analysis (PCA) for electroencephalogram (EEG) feature selection is presented. This algorithm introduces the category information, and uses the sum of mutual information matrices between features under different motor imagery category to replace the covariance matrix. The eigenvectors of the sum matrix represent the direction of the principal components and the eigenvalues of the sum matrix are used to determine the dimensionality of principal components. 2005 International BCI competition data set was used in our experiments, and four feature extraction methods were adopted, i. e. power spectrum estimation, continuous wavelet transform, wavelet packet decomposition and Hjorth parameters. The proposed feature selection algorithm was adopted to select and combine the most useful features for classification. The results showed that relative to the PCA algorithm, our algorithm had better performance in dimensionality reduction and in classification accuracy with the assistance of support vector machine classifier under the same dimensionality of principal components.

    Release date: Export PDF Favorites Scan
  • Efficient connectivity analysis of electroencephalogram in the pre-shot phase of rifle shooting based on causality method

    The directed functional connectivity in cerebral cortical is the key to understanding the pattern of the behavioral tissue. This process was studied to explore the directed functional network of rifle shooters at cerebral cortical rhythms from electroencephalogram (EEG) data, aiming to provide neurosciences basis for the future development of accelerating rifle skill learning method. The generalized orthogonalized partial directed coherence (gOPDC) algorithm was used to calculate the effective directed functional connectivity of the experts and novices in the pre-shot period. The results showed that the frontal, frontal-central, central, parietal and occipital regions were activated. Moreover, the more directed functional connections numbers in right hemispheres were observed compared to the left hemispheres. Furthermore, as compared to experts, novices had more activated regions, the stronger strength of connections and the lower value of the global efficiency during the pre-shot period. Those indirectly supported the conclusion that the novices needed to recruit more brain resources to accomplish tasks, which was consistent with " neural efficiency” hypothesis of the functional cerebral cortical in experts.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Application and evaluation of standardized management in video-electro-encephalogram monitoring

    ObjectiveTo explore the application effect of standardized management on video-electroencephalogram (VEEG) monitoring.MethodsIn January 2018, a multidisciplinary standardized management team composed with doctors, technicians, and nurses was established. The standardized management plan for VEEG monitoring from outpatient, pre-hospital appointment, hospitalization and post-discharge follow-up was developed; the special quilt for epilepsy patients was designed and customized, braided for the patient instead of shaving head, standardized the work flow of the staff, standardized the health education of the patients and their families, and standardized the quality control of the implementation process. The standardized managemen effect carried out from January to December 2018 (after standardized managemen) was compared with the management effect from January to December 2017 (before standardized managemen).ResultsAfter standardized management, the average waiting time of patients decreased from (2.08±1.13) hours to (0.53±0.21) hours, and the average hospitalization days decreased from (6.63±2.54) days to (6.14±2.17) days. The pass rate of patient preparation increased from 63.14% to 90.09%. The capture rate of seizure onset increased from 73.37% to 97.08%. The accuracy of the record increased from 33.12% to 94.10%, the doctor’s satisfaction increased from 76.34±29.53 to 97.99±9.27, and the patient’s satisfaction increased from 90.04±18.97 to 99.03±6.51. The difference was statistically significant (P<0.05).ConclusionStandardization management is conducive to ensuring the homogeneity of clinical medical care, reducing the average waiting time and the average hospitalization days, improving the capture rate and accuracy of seizures, ensuring the quality of medical care and improving patient’s satisfaction.

    Release date:2019-06-25 09:50 Export PDF Favorites Scan
  • Research on the correlation of brain function based on improved phase locking value

    The phase lock value(PLV) is an effective method to analyze the phase synchronization of the brain, which can effectively separate the phase components of the electroencephalogram (EEG) signal and reflect the influence of the signal intensity on the functional connectivity. However, the traditional locking algorithm only analyzes the phase component of the signal, and can’t effectively analyze characteristics of EEG signal. In order to solve this problem, a new algorithm named amplitude locking value (ALV) is proposed. Firstly, the improved algorithm obtained intrinsic mode function using the empirical mode decomposition, which was used as input for Hilbert transformation (HT). Then the instantaneous amplitude was calculated and finally the ALV was calculated. On the basis of ALV, the instantaneous amplitude of EEG signal can be measured between electrodes. The data of 14 subjects under different cognitive tasks were collected and analyzed for the coherence of the brain regions during the arithmetic by the improved method. The results showed that there was a negative correlation between the coherence and cognitive activity, and the central and parietal areas were most sensitive. The quantitative analysis by the ALV method could reflect the real biological information. Correlation analysis based on the ALV provides a new method and idea for the research of synchronism, which offer a foundation for further exploring the brain mode of thinking.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • The clinical features and Video-EEG of Eyelid myoclonia-nonconvulsive status epilepticus in children

    ObjectiveTo study the clinical and EEG features, therapeutic response and prognosis of eyelid myoclonia-nonconvulsive status epilepticus (EM-NCSE) in children.MethodsCollected the clinical and EEG data of 3 children with EM-NCSE that were diagnosed in department of neurology in Qilu Children Hospital of Shandong university during the January in 2015 to August in 2016.Analysed the therapeutic response to antiepletic drugs(AEDs).ResultsAmong the three children, there were 2 girls and 1 boy.The age at the onset of the disease was from 6 to 10 years old.The average age of them is 8.67 years old.The clinical manifestations include mental confusion, dysphoria, winking and scrolling up the eyes.The typical vedio electroencephalography (VEEG) in the patients showed 3~6 Hz generalized spike and waves and polyspikes burst, especially in the frontal and the anterior temporal region.In addition, the eye closure and intermittent photic stimulation helped to induce discharges and clinical events as eyelid myoclonia (EM).ConclusionsEM-NCSE is one of the idiopathic and generalized epileptic disease and characterized by EM.Video EEG monitoring plays an important role in the diagnosis of this disease.The drugs of choice for treatment was diazepam.When the event was controlled, AEDs were effective for the following therapy.

    Release date:2017-05-24 05:46 Export PDF Favorites Scan
  • EEG Feature Extraction Based on Quantum Particle Swarm Optimizer And Independent Component Analysis

    Feature extraction is a very crucial step in P300-based brain-computer interface (BCI) and independent component analysis (ICA) is a suitable P300 feature extraction method. But at present the convergence performance of the general ICA iteration methods are not very satisfactory. In this paper, a method based on quantum particle swarm optimizer (QPSO) algorithm and ICA technique is put forward for P300 extraction. In this method, quantum computing is used to impel ICA iteration to globally converge faster. It achieved the purpose of extracting P300 rapidly and efficiently. The method was tested on two public datasets of BCI Competition Ⅱ and Ⅲ, and a simple linear classifier was employed to classify the extracted P300 features. The recognition accuracy reached 94.4% with 15 times averaged. The results showed that the proposed method could extract P300 rapidly and the extraction effect did not reduce. It provides an experimental basis for further study of real-time BCI system.

    Release date: Export PDF Favorites Scan
  • Thalamocortical Neural Mass Model Simulation and Study Based on Field Programmable Gate Array

    Using the computer to imitate the neural oscillations of the brain is of great significance for the analysis of brain functions. Thalamocortical neural mass model (TNMM) reflects the mechanisms of neural activities by establishing the relationships between the thalamus and the cortex, which contributes to the understanding of some specific cognitive functions of the brain and the neural oscillations of electroencephalogram (EEG) rhythms. With the increasing complexity and scale of neural mass model, the performance of conventional computer system can not achieve rapid and large-scale model simulation. In order to solve this problem, we proposed a computing method based on Field Programmable Gate Array (FPGA) hardware in this study. The Altera's DSP Builder module combined with MATLAB/Simulink was used to achieve the construction of complex neural mass model algorithm, which is transplanted to the FPGA hardware platform. This method takes full advantage of the ability of parallel computing of FPGA to realize fast simulation of large-scale and complex neural mass models, which provides new solutions and ideas for computer implementation of neural mass models.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Brain Efficient Connectivity Analysis of Attention Based on the Granger Causality Method

    The study of brain information flow is of great significance to understand brain function in the field of neuroscience. The Granger causality is widely used functional connectivity analysis using multivariate autoregressive model based on the predicted mechanism. High resolution electroencephalogram (EEG) signals of ten healthy subjects were collected with a visual selective attention task. Firstly, independent component analysis was used to extract three spatially independent components of the occipital, parietal, and frontal cortices. Secondly, the Granger causal connectivity was computed between these three regions based on the Granger causality method and then independent sample t-test and bootstrap were used to test the significance of connections. The results showed that Granger causal connectivity existed from frontal to occipital and from parietal to occipital in attentional condition, while causal connectivity from frontal to occipital disappeared in unattentional condition.

    Release date: Export PDF Favorites Scan
  • Study on the improvement of brain cognitive function status by mind-control game training

    This study uses mind-control game training to intervene in patients with mild cognitive impairment to improve their cognitive function. In this study, electroencephalogram (EEG) data of 40 participants were collected before and after two training sessions. The continuous complexity of EEG signals was analyzed to assess the status of cognitive function and explore the effect of mind-control game training on the improvement of cognitive function. The results showed that after two training sessions, the continuous complexity of EEG signal of the subject increased (0.012 44 ± 0.000 29, P < 0.05) and amplitude of curve fluctuation decreased gradually, indicating that with increase of training times, the continuous complexity increased significantly, the cognitive function of brain improved significantly and state was stable. The results of this paper may show that mind-control game training can improve the status of the brain cognitive function, which may provide support and help for the future intervention of cognitive dysfunction.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
11 pages Previous 1 2 3 ... 11 Next

Format

Content