This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competitionⅢand competitionⅣreached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the ‘clean’ EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.
Ballistocardiogram (BCG) signal is a physiological signal, reflecting heart mechanical status. It can be measured without any electrodes touching subject's body surface and can realize physiological monitoring ubiquitously. However, BCG signal is so weak that it would often be interferred by superimposed noises. For measuring BCG signal effectively, we proposed an approach using joint time-frequency distribution and empirical mode decomposition (EMD) for BCG signal de-noising. We set up an adaptive optimal kernel for BCG signal and extracted BCG signals components using it. Then we de-noised the BCG signal by combing empirical mode decomposition with it. Simulation results showed that the proposed method overcome the shortcomings of empirical mode decomposition for the signals with identical frequency content at different times, realized the filtering for BCG signal and also reconstructed the characteristics of BCG.
The phase lock value(PLV) is an effective method to analyze the phase synchronization of the brain, which can effectively separate the phase components of the electroencephalogram (EEG) signal and reflect the influence of the signal intensity on the functional connectivity. However, the traditional locking algorithm only analyzes the phase component of the signal, and can’t effectively analyze characteristics of EEG signal. In order to solve this problem, a new algorithm named amplitude locking value (ALV) is proposed. Firstly, the improved algorithm obtained intrinsic mode function using the empirical mode decomposition, which was used as input for Hilbert transformation (HT). Then the instantaneous amplitude was calculated and finally the ALV was calculated. On the basis of ALV, the instantaneous amplitude of EEG signal can be measured between electrodes. The data of 14 subjects under different cognitive tasks were collected and analyzed for the coherence of the brain regions during the arithmetic by the improved method. The results showed that there was a negative correlation between the coherence and cognitive activity, and the central and parietal areas were most sensitive. The quantitative analysis by the ALV method could reflect the real biological information. Correlation analysis based on the ALV provides a new method and idea for the research of synchronism, which offer a foundation for further exploring the brain mode of thinking.
In this paper, an improved empirical mode decomposition (EMD) algorithm for phonocardiogram (PCG) signal de-noising is proposed. Based on PCG signal processing theory, the S1/S2 components can be extracted by combining the improved EMD-Wavelet algorithm and Shannon energy envelope algorithm. Firstly, by applying EMD-Wavelet algorithm for pre-processing, the PCG signal was well filtered. Then, the filtered PCG signal was saved and applied in the following processing steps. Secondly, time domain features, frequency domain features and energy envelope of the each intrinsic mode function's (IMF) were computed. Based on the time frequency domain features of PCG's IMF components which were extracted from the EMD algorithm and energy envelope of the PCG, the S1/S2 components were pinpointed accurately. Meanwhile, a detecting fixed method, which was based on the time domain processing, was proposed to amend the detection results. Finally, to test the performance of the algorithm proposed in this paper, a series of experiments was contrived. The experiments with thirty samples were tested for validating the effectiveness of the new method. Results of test experiments revealed that the accuracy for recognizing S1/S2 components was as high as 99.75%. Comparing the results of the method proposed in this paper with those of traditional algorithm, the detection accuracy was increased by 5.56%. The detection results showed that the algorithm described in this paper was effective and accurate. The work described in this paper will be utilized in the further studying on identity recognition.
Artifacts produced by chest compression during cardiopulmonary resuscitation (CPR) seriously affect the reliability of shockable rhythm detection algorithms. In this paper, we proposed an adaptive CPR artifacts elimination algorithm without needing any reference channels. The clean electrocardiogram (ECG) signals can be extracted from the corrupted ECG signals by incorporating empirical mode decomposition (EMD) and independent component analysis (ICA). For evaluating the performance of the proposed algorithm, a back propagation neural network was constructed to implement the shockable rhythm detection. A total of 1 484 corrupted ECG samples collected from pigs were included in the analysis. The results of the experiments indicated that this method would greatly reduce the effects of the CPR artifacts and thereby increase the accuracy of the shockable rhythm detection algorithm.
Early detection and timely intervention are very essential for autism. This paper used the wavelet transform and empirical mode decomposition (EMD) to extract the features of electroencephalogram (EEG), to compare the feature differences of EEG between the autistic children and healthy children. The experimental subjects included 25 healthy children (aged 5–10 years old) and 25 children with autism (20 boys and 5 girls aged 5–10 years old) respectively. The alpha, beta, theta and delta rhythm wave spectra of the C3, C4, F3, F4, F7, F8, FP1, FP2, O1, O2, P3, P4, T3, T4, T5 and T6 channels were extracted and decomposed by EMD decomposition to obtain the intrinsic modal functions. Finally the support vector machine (SVM) classifier was used to implement assessment of autism and normal classification. The results showed that the accuracy could reach 87% and which was nearly 20% higher than that of the model combining the wavelet transform and sample entropy in the paper. Moreover, the accuracy of delta (1–4 Hz) rhythm wave was the highest among the four kinds of rhythms. And the classification accuracy of the forehead F7 channel, left FP1 channel and T6 channel in the temporal region were all up to 90%, which expressed the characteristics of EEG signals in autistic children better.
Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA. Secondly, intrinsic mode functions (IMF) of PLI was filtered. The noise suppression rate (NSR) and the signal distortion ratio (SDR) were used to evaluate the effect of de-noising algorithm. Finally, the ECG signals were re-constructed. Based on the experimental comparison, it was concluded that the proposed algorithm had better filtering functions than the improved Levkov algorithm, because it could not only effectively filter the PLI, but also have smaller SDR value.
Brain computer interface is a control system between brain and outside devices by transforming electroencephalogram (EEG) signal. The brain computer interface system does not depend on the normal output pathways, such as peripheral nerve and muscle tissue, so it can provide a new way of the communication control for paralysis or nerve muscle damaged disabled persons. Steady state visual evoked potential (SSVEP) is one of non-invasive EEG signals, and it has been widely used in research in recent years. SSVEP is a kind of rhythmic brain activity simulated by continuous visual stimuli. SSVEP frequency is composed of a fixed visual stimulation frequency and its harmonic frequencies. The two-dimensional ensemble empirical mode decomposition (2D-EEMD) is an improved algorithm of the classical empirical mode decomposition (EMD) algorithm which extended the decomposition to two-dimensional direction. 2D-EEMD has been widely used in ocean hurricane, nuclear magnetic resonance imaging (MRI), Lena image and other related image processing fields. The present study shown in this paper initiatively applies 2D-EEMD to SSVEP. The decomposition, the 2-D picture of intrinsic mode function (IMF), can show the SSVEP frequency clearly. The SSVEP IMFs which had filtered noise and artifacts were mapped into the head picture to reflect the time changing trend of brain responding visual stimuli, and to reflect responding intension based on different brain regions. The results showed that the occipital region had the strongest response. Finally, this study used short-time Fourier transform (STFT) to detect SSVEP frequency of the 2D-EEMD reconstructed signal, and the accuracy rate increased by 16%.
Spike recorded by multi-channel microelectrode array is very weak and susceptible to interference, whose noisy characteristic affects the accuracy of spike detection. Aiming at the independent white noise, correlation noise and colored noise in the process of spike detection, combining principal component analysis (PCA), wavelet analysis and adaptive time-frequency analysis, a new denoising method (PCWE) that combines PCA-wavelet (PCAW) and ensemble empirical mode decomposition is proposed. Firstly, the principal component was extracted and removed as correlation noise using PCA. Then the wavelet-threshold method was used to remove the independent white noise. Finally, EEMD was used to decompose the noise into the intrinsic modal function of each layer and remove the colored noise. The simulation results showed that PCWE can increase the signal-to-noise ratio by about 2.67 dB and decrease the standard deviation by about 0.4 μV, which apparently improved the accuracy of spike detection. The results of measured data showed that PCWE can increase the signal-to-noise ratio by about 1.33 dB and reduce the standard deviation by about 18.33 μV, which showed its good denoising performance. The results of this study suggests that PCWE can improve the reliability of spike signal and provide an accurate and effective spike denoising new method for the encoding and decoding of neural signal.