west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "fibroblasts" 27 results
  • DIFFERENTIATION OF DIRECTLY CO-CULTURED BONE MARROW MESENCHYMAL STEM CELLS AND LIGAMENT FIBROBLASTS INTO LIGAMENT CELLS AFTER INDUCED BY TRANSFORMING GROWTH FACTORβ1 AND BASIC FIBROBLAST GROWTH FACTOR 1

    ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.

    Release date: Export PDF Favorites Scan
  • BIOCOMPATIBILITY STUDY ON TENDON MIXED EXTRACTION OF BOVINE COLLAGEN FOR PERIODONTAL TISSUE ENGINEERING

    Objective To study the biocompatibility of tendon mixedextraction of bovine collagen(tMEBC) and to explore the feasibility of using the threedimensional framework as periodontal tissue engineering scaffold. Methods After being prepared, the tMEBC were cultured with the P4P6 of human periodontal ligament fibroblasts (HPDLFs) in vitro. Threedimensional framework was prepared from bovine tendon. The P4-P6 of HPDLFs (with an initial density of 5×106 cells/ml) were cultured in vitro. Cell attachment andproliferation were measured by cell counting 1 day, 3,5, and 10 days after cell seeding. Histological examination was performed with light microscope and scanning electron microscope 5 and 10 days after cell seeding. Results Porous structure, which supported the proliferation and attachment of HPDLFs, was found in tMEBC. The density of cell increased from 0.556×104 cells/ml 24 hours after cell seeding to 3.944×104 cells/ml 10 days after seeding. Light and scanning electron microscope examinationindicated that HPDLFs were attached and extended on the three-dimensional scaffolds and were well embedded in the newly formed tissue matrix. ConclusiontMEBC has good biocompatibility with the HPDLFs, and can be used as scaffold for cell transplantation in periodontal tissue engineering.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • RESEARCH ADVANCEMENT OF BONE MARROW DERIVED STEM CELL HETEROGENEITY AND ITS ROLE ININTESTINAL EPITHELIAL REPAIR

    Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • Mechanism of lipolytic and smooth effects of D980-nm laser treatment on skin tissue in rats

    Objective To determine the efficacy of D980-nm laser in dissolving fat and renewing skin, and to explore the clinical application of D980-nm laser in reconstruction of photodamaged skin. Methods Eighteen 12-14 month-old male Sprague-Dawley rats, weighing 400-450 g, were randomly divided into 3 groups (n=6). The rat skin at the left side was exposed to D980-nm laser irradiation at a density of 20 J/cm2, a power of 8 W, a pulse width of 20 ms, and a pulse frequency of 40 Hz for 1 time (group A), 2 times of 5-minute interval (group B), and 3 times of 5-minute interval (group C) as a treatment course, for 4 treatment courses with an interval of 1 week; the other side of the skin was not treated as the control groups (groups A1, B1, and C1, respectively). After 8 weeks, the skin was harvested for HE staining and immunohistochemical staining to observe the structure changes of skin, to measure the dermal thickness, to count the number of fibroblasts, and detect the expressions of transforming growth factor β1 (TGF-β1) and basic fibroblast growth factor (bFGF). Results Compared with groups A1, B1, and C1, the skin structure was significantly improved in groups A, B, and C. After D980-nm laser irradiation, the number of fat cells decreased; local angiogenesis was observed; the total number of fibroblasts and fibers increased; the collagen fiber had large diameter, and arranged closely and regularly; the dermal thickness and the number of the fibroblasts increased; and the expressions of TGF-β1 and bFGF were significantly enhanced, showing significant differences (P<0.05). With increased D980-nm laser irradiation times, the above indexes increased, showing significant differences between group C and groups A, B (P<0.05). Conclusion D980-nm laser treatment has lipolytic and tender effect on the skin, and the frequency of the treatment is an important factor in skin renewal.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • Research status of role of cancer-associated fibroblasts in regulation of immune response in tumor microenvironment

    ObjectiveTo introduce the research status of the immunoregulation function of cancer-associated fibroblasts (CAFs) in tumor microenvironment.MethodThe literatures in recent years on the studies of role of CAFs in the regulation of immune response in the tumor microenvironment were collected and summarized.ResultsThe CAFs played a critical role as the components of the tumor microenvironment. The CAFs could product various growth factors and cytokines that were contributed to the immunoregulation including the polarization of the immune cells and the regulation of the function of immune cells in the tumor microenvironment and eventually resulted in the carcinogenesis, tumor progression, invasion, metastasis and therapy resistance.ConclusionCAFs play a significant role in the immunoregulation in tumor microenvironment, but as a potential target for breast cancer, more studies are still needed to discover the specific markers, heterogeneity, and key signaling pathways.

    Release date:2020-12-30 02:01 Export PDF Favorites Scan
  • Cancer associated fibroblasts promote growth of primarily cultured pancreatic ductal adenocarcinoma cells in vitro and tumor formation in patient-derived tumor xenograft model

    ObjectiveTo optimize the culture method of human primary pancreatic ductal adenocarcinoma (PDAC) cells and cancer associated fibroblasts (CAFs) and investigate the effect of CAFs on the growth of primary PDAC cells in vitro and tumor formation in patient-derived xenograft (PDX) model.MethodsThe PDAC specimens were collected and primarily cultured. In order to observe the effect of CAFs on the growth of primary PDAC cells in vitro, the CAFs were co-cultured with primary PDAC cells consistently and the alone cultured primary PDAC cells served as the control. Then, these cells were injected into the shoulder blades of NOG mice in order to develop the PDX model.ResultsWhen the primary PDAC cells separated from the CAFs, the proliferation capacity of the primary PDAC decreased rapidly in the passage culture in vitro, and the most cells were terminated within 5 generations. By contrast, when the CAFs co-cultured with the primary PDAC cells, the proliferation capacity of primary PDAC cells were preserved, which could be stably transferred to at least 10 generations. The tumors of NOG mice were detected during 2–3 weeks after injecting the mixed cells (primary PDAC plus CAFs), while had no tumor formation after injecting CAFs alone. The rate of tumor was 92.9% (13 cases) in the primary PDAC plus CAFs group, which was higher than that of the CAFs alone group (64.3%, 9 cases), but there was no statistical difference because of the small sample size. The volume of tumor in the primary PDAC plus CAFs group at 2, 4, 6, and 8 weeks after the tumor cells injection was significantly larger than that in the CAFs alone group at the corresponding time point, the differences were statistically significant (P<0.01).ConclusionsThe CAFs could promote the growth of primary PDAC cells in vitro. This new method of co-culture CAFs with primary PDAC could improve the success rate of primary PDAC cells culture and improve the success rate of PDX model in NOG mice.

    Release date:2020-03-30 08:25 Export PDF Favorites Scan
  • ESTABLISHMENT OF FEEDER-FREE CULTURE SYSTEM OF HUMAN PARTHENOGENETIC EMBRYONIC STEM CELLS

    Objective To establish a safe, effective, and economic feeder-free culture system which is suitable for the culture of human parthenogenetic embryonic stem cells (hPESCs) in vitro. Methods hPESCs were cultured with mTeSRTMl medium (control group) and human foreskin fibroblasts-conditional medium (hFFs-CM) (experimental group). The growth status of hPESCs in both feeder-free culture systems were observed with inverted microscope. Alkaline phosphatase (ALP) analysis and karyotype analysis were used to study the biological characteristics of hPESCs. The expression of hPESCs pluripotent marker Oct-4 was analyzed by RT-PCR. Differentiation experiment in vivo and in vitro was applied to observe the differentiation potential of hPESCs into three germ layers. Results hPESCs had regular morphology with difficulty in differentiation in both culture systems. No obvious difference was observed in morphology and expansion speed of hPESCs between 2 groups. After subcultured for 15 passages in vitro, hPESCs in 2 groups could maintain normal female diploid karyotype 46, XX and pluripotency. The expression of Oct-4 mRNA was positive in 2 groups. hPESCs in 2 groups could form embryonic body in differentiation experiment in vitro and could develop into teratomas containing three germ layers in nude mice. Conclusion Feeder-free culture system of hFFs-CM can sustain the growth of hPESCs and keep hPESCs undifferentiated state for long. A feeder-free culture system of hPESCs is successfully established, which can support the growth of hPESCs, reduce the contamination from animals, decrease the cost of culture, and satisfy the clinical large-scale application.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • Research progress of cancer-associated fibroblasts in breast cancer metastasis and drug resistance

    ObjectiveTo summarize the latest research progress and related mechanisms of cancer-associated fibroblasts (CAFs) in invasion, metastasis and drug resistance of breast cancer, so as to seek the best treatment strategy for patients with breast cancer metastasis and drug resistance. MethodThe literatures about CAFs research in breast cancer in recent years were searched and summarized. ResultsCAFs was the main stromal cell in tumor microenvironment (TME). By changing TME, the biological characteristics of CAFs could be changed and the growth and invasion of breast cancer cells could be induced. CAFs in breast cancer promotes the invasion and metastasis of breast cancer cells by interacting with inflammatory factors and promoting the formation of pre-transplantation ecosystems, and CAFs also mediates chemotherapy resistance to breast cancer, target resistance, endocrine resistance, and radiation resistance through the secretion of various cellular factors. ConclusionsAt present, some progress has been made in the research of CAFs in breast cancer, but there is still a certain gap to clinical application CAFs has a variety of functional phenotypes, so it is necessary to identify and characterize specific CAFs subtypes when studying new anti-CAFs therapeutic strategies. It has been proved that CAFs has great potential as a specific target for breast cancer treatment, but CAFs still lacks specific biomarkers. Therefore, an in-depth understanding of the biological characteristics and heterogeneity of CAFs can provide a reliable theoretical basis for developing drugs targeting CAFs.

    Release date:2023-12-26 06:00 Export PDF Favorites Scan
  • In vitrodifferentiation of human amniotic mesenchymal stem cells into ligament fibroblasts after induced by transforming growth factor β1 and vascular endothelial growth factor

    Objective To investigate whether human amniotic mesenchymal stem cells (hAMSCs) have the characteristics of mesenchymal stem cells (MSCs) and the differentiation capacity into ligament fibroblastsin vitro. Methods The hAMSCs were separated through trypsin and collagenase digestion from placenta, the phenotypic characteristics of hAMSCs were detected by flow cytometry, the cytokeratin-19 (CK-19) and vimentin expression of hAMSCs were tested through immunofluorescence staining. The hAMSCs at the 3rd passage were cultured with L-DMEM/F12 medium containing transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF) as the experimental group and with single L-DMEM/F12 medium as the control group. The morphology of hAMSCs was observed by inverted phase contrast microscope; the cellular activities and ability of proliferation were examined by cell counting kit-8 (CCK-8) method; the ligament fibroblasts related protein expressions including collagen type I, collagen type III, Fibronectin, and Tenascin-C were detected by immunofluorescence staining; specific mRNA expressions of ligament fibroblasts and angiogenesis including collagen type I, collagen type III, Fibronectin, α-smooth muscle actin (α-SMA), and VEGF were measured by real-time fluorescence quantitative PCR. Results The hAMSCs presented monolayer and adherent growth under inverted phase contrast microscope; the flow cytometry results demonstrated that hAMSCs expressed the MSCs phenotypes; the immunofluorescence staining results indicated the hAMSCs had high expression of the vimentin and low expression of CK-19; the hAMSCs possessed the differentiation ability into the osteoblasts, chondroblasts, and lipoblasts. The CCK-8 results displayed that cells reached the peak of growth curve at 7 days in each group, and the proliferation ability in the experimental group was significantly higher than that in the control group at 7 days (P<0.05). The immunofluorescence staining results showed that the expressions of collagen type I, collagen type III, Fibronectin, and Tenascin-C in the experimental group were significantly higher than those in the control group at 5, 10, and15 days after culture (P<0.05). The real-time fluorescence quantitative PCR results revealed that the mRNA relative expressions had an increasing tendency at varying degrees with time in the experimental group (P<0.05). The relative mRNA expressions of collagen type I, collagen type III, Fibronectin, α-SMA, and VEGF in the experimental group were significantly higher than those in the control group at the other time points (P<0.05), but no significant difference was found in the relative mRNA expressions of collagen type I, collagen type III, and VEGF between 2 groups at 5 days (P>0.05). Conclusion The hAMSCs possesses the characteristics of MSCs and good proliferation ability which could be chosen as seed cell source in tissue engineering. The expressions of ligament fibroblasts and angiogenesis related genes could be up-regulated, after inductionin vitro, and the synthesis of ligament fibroblasts related proteins could be strengthened. In addition, the application of TGF-β1 and VEGF could be used as growth factors sources in constructing tissue engineered ligament.

    Release date:2017-05-05 03:16 Export PDF Favorites Scan
  • Differential expression of BKCa channels in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation

    Objective Through analyzing BKCa channel expression in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation (AF), to explore the mechanism of myocardial fibrosis and provide new therapeutic strategies for the treatment and reversal of AF structure reconstruction. Methods We selected 10 patients of rheumatic heart valvular disease who underwent valve replacement surgery. They were 5 patients with sinus rhythm (a sinus rhythm group, 2 males and 3 females with an average age of 49.1±8.3 years) and 5 with AF (an AF group, 3 males and 2 females with an average age of 50.3±5.8 years). About 100 mg tissue was obtained from the right auricula dextra, and the atrial fibroblasts were cultured by tissue block adherence method, and the expression of BKCa channel genes and proteins in cultured fibroblasts was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods. Results (1) The general data of 10 patients between the AF group and the sinus rhythm group were compared. There was no significant difference between the two groups in age (t=1.21, P=0.67) and sex (t=2.56, P=0.75). There was statistical difference in the left atrial diameter and the right atrium diameter between the two groups (t=19.45, P=0.01; t=23.52, P=0.06); (2) the mRNA expression of BKCa subunit was detected by qRT-PCR method, and there was no significant difference in the mRNA expression of BKCa α and BKCa β1 between the two groups (t=3.14, P=0.79; t=2.88, P=0.69); (3) the expression of BKCa protein was detected by western blotting method, and there was no significant difference in the protein expression of BKCa α and BKCa β1 between the two groups (t=0.55, P=0.31; t=0.73, P=0.46). Conclusion BKCa pathway may not be involved in the pathogenesis and maintenance of AF, but it may play an important role in the process of myocardial fibrosis.

    Release date:2017-12-04 10:31 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content