west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "finite element" 83 results
  • Simulation Prediction of Bone Defect Repair Using Biodegradable Scaffold Based on Finite Element Method

    Aiming at the problem of scaffold degradation in bone tissue engineering, we studied the feasibility that controlls bone defect repair effect with the inhomogeneous structure of scaffold. The prediction model of bone defect repair which contains governing equations for bone formation and scaffold degradation was constructed on the basis of analyzing the process and main influence factors of bone repair in bone tissue engineering. The process of bone defect repair and bone structure after repairing can be predicted by combining the model with finite element method (FEM). Bone defect repair effects with homogenous and inhomogeneous scaffold were simulated respectively by using the above method. The simulation results illustrated that repair effect could be impacted by scaffold structure obviously and it can also be controlled via the inhomogeneous structure of scaffold with some feasibility.

    Release date: Export PDF Favorites Scan
  • Finite Element Analysis of Intravascular Stent Based on ANSYS Software

    This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.

    Release date: Export PDF Favorites Scan
  • Determination of a visco-hyperelastic material law based on dynamic tension test data

    The objective of this study was to determine the visco-hyperelastic constitutive law of brain tissue under dynamic impacts. A method combined by finite element simulations and optimization algorithm was employed for the determination of material variables. Firstly, finite element simulations of brain tissue dynamic uniaxial tension, with a maximum stretch rate of 1.3 and strain rates of 30 s–1 and 90 s–1, were developed referring to experimental data. Then, fitting errors between the engineering stress-strain curves predicted by simulations and experimental average curves were assigned as objective functions, and the multi-objective genetic algorithm was employed for the optimation solution. The results demonstrate that the brain tissue finite element models assigned with the novel obtained visco-hyperelastic material law could predict the brain tissue’s dynamic mechanical characteristic well at different loading rates. Meanwhile, the novel material law could also be applied in the human head finite element models for the improvement of the biofidelity under dynamic impact loadings.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Research on the mechanical differences of machinable lithium disilicate all-ceramic crowns

    Due to the superior pigment and high flexural strength, machinable lithium disilicate ceramics can be used as a monolithic crown or veneering porcelains on the zirconia core to form the all-ceramic crowns by sintering or bonding procedures. This paper reports the research on the differences in stress distributions amongst these three types of all-ceramic crowns under typical loading conditions. Three-dimensional numerical models of the restored crown based on the first mandibular molar were developed. The vertical concentrated load and 8-point uniformly distributed load were applied, respectively. The maximum stress and stress distribution were resulted from finite element evaluation. It was found that the maximum tensile stress in 3 types of restored crowns subjected to the concentrate load was less than the flexural strength of IPS e.max. The stress distributions in the sintered and bonded double layered crowns were basically identical, and different from the monolithic crown. The stress magnitude in veneer porcelain of the bonded crown was greater than that in the sintered crown. The use of IPS e.max computer aided design monolithic crown as molar restorations should be careful to avoid high stress as the cyclic stress is a concern of fatigue which may influence the longevity of the restored crown. The bonded double layer crowns bear greater risks of veneer chipping compared with the sintered crowns. The conclusions of this study provide helpful guidelines in clinical applications for preparation of computer aided design/computer aided manufacture lithium disilicate all-ceramic restorations.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Three-dimensional finite element model construction and biomechanical analysis of customized titanium alloy lunate prosthesis

    Objective To design customized titanium alloy lunate prosthesis, construct three-dimensional finite element model of wrist joint before and after replacement by finite element analysis, and observe the biomechanical changes of wrist joint after replacement, providing biomechanical basis for clinical application of prosthesis. Methods One fresh frozen human forearm was collected, and the maximum range of motions in flexion, extension, ulnar deviation, and radialis deviation tested by cortex motion capture system were 48.42°, 38.04°, 35.68°, and 26.41°, respectively. The wrist joint data was obtained by CT scan and imported into Mimics21.0 software and Magics21.0 software to construct a wrist joint three-dimensional model and design customized titanium alloy lunate prosthesis. Then Geomagic Studio 2017 software and Solidworks 2017 software were used to construct the three-dimensional finite element models of a normal wrist joint (normal model) and a wrist joint with lunate prosthesis after replacement (replacement model). The stress distribution and deformation of the wrist joint before and after replacement were analyzed for flexion at and 15°, 30°, 48.42°, extension at 15°, 30°, and 38.04°, ulnar deviation at 10°, 20°, and 35.68°, and radial deviation at 5°, 15°, and 26.41° by the ANSYS 17.0 finite element analysis software. And the stress distribution of lunate bone and lunate prosthesis were also observed. Results The three-dimensional finite element models of wrist joint before and after replacement were successfully constructed. At different range of motion of flexion, extension, ulnar deviation, and radial deviation, there were some differences in the number of nodes and units in the grid models. In the four directions of flexion, extension, ulnar deviation, and radial deviation, the maximum deformation of wrist joint in normal model and replacement model occurred in the radial side, and the values increased gradually with the increase of the range of motion. The maximum stress of the wrist joint increased gradually with the increase of the range of motion, and at maximum range of motion, the stress was concentrated on the proximal radius, showing an overall trend of moving from the radial wrist to the proximal radius. The maximum stress of normal lunate bone increased gradually with the increase of range of motion in different directions, and the stress position also changed. The maximum stress of lunate prosthesis was concentrated on the ulnar side of the prosthesis, which increased gradually with the increase of the range of motion in flexion, and decreased gradually with the increase of the range of motion in extension, ulnar deviation, and radialis deviation. The stress on prosthesis increased significantly when compared with that on normal lunate bone. Conclusion The customized titanium alloy lunate prosthesis does not change the wrist joint load transfer mode, which provided data support for the clinical application of the prosthesis.

    Release date:2023-07-12 09:34 Export PDF Favorites Scan
  • Finite element method simulating bursting process of multi-chamber flexible package infusion bag

    This study aims to overcome the shortcomings such as low efficiency, high cost and difficult to carry out multi-parameter research, which limited the optimization of infusion bag configuration and manufacture technique by experiment method. We put forward a fluid cavity based finite element method, and it could be used to simulate the stress distribution and deformation process of infusion bag under external load. In this paper, numerical models of infusion bag with different sizes was built, and the fluid-solid coupling deformation process was calculated using the fluid cavity method in software ABAQUS subject to the same boundary conditions with the burst test. The peeling strength which was obtained from the peeling adhesion test was used as failure criterion. The calculated resultant force which makes the computed peeling stress reach the peeling strength was compared with experiment data, and the stress distribution was analyzed compared with the rupture process of burst test. The results showed that considering the errors caused by the difference of weak welding and eccentric load, the flow cavity based finite element method can accurately model the stress distribution and deformation process of infusion bag. It could be useful for the optimization of multi chamber infusion bag configuration and manufacture technique, leading to cost reduction and study efficiency improvement.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Finite element analysis of the effect of local posterior sclera collagen cross-linking on eyeball shape

    China is the country with high incidence of high myopia in the world. High myopia can cause severe vision impairment. So far, there is no effective treatment for high myopia in clinic. Scleral collagen cross-linking surgery has been proven to be effective in preventing animal eye axial elongation in vitro and in vivo. However, the influence of posterior scleral collagen cross-linking on the deformation of the whole eyeball is still unclear. In this study, finite element simulation were used to analyze the changes of eyeball shape and the position of light casting on the retina after posterior sclera cross-linking, and the mathematical algorithm was written to verify their similarity. The results showed that the shape of the whole eyeball was still very similar before and after cross-linking, and the diopter of the eyeball after cross-linking had little change, which had almost no effect on the position of light projection on the retina. Our results indicate that posterior sclera cross-linking wouldn’t lead to distortion to the optometry, that is, the increase of elastic modulus in local scleral tissue after cross-linking wouldn’t cause new problem of optometry and vision.

    Release date:2022-02-21 01:13 Export PDF Favorites Scan
  • Establishment of finite element model of varus-type ankle arthritis and biomechanical analysis of different correction models for tibial anterior surface angle

    Objective To establish the finite element model of varus-type ankle arthritis and to implement the finite element mechanical analysis of different correction models for tibial anterior surface angle (TAS) in supramalleolar osteotomy. Methods A female patient with left varus-type ankle arthritis (Takakura stage Ⅱ, TAS 78°) was taken as the study object. Based on the CT data, the three-dimensional model of varus-type ankle arthritis (TAS 78°) and different TAS correction models [normal (TAS 89°), 5° valgus (TAS 94°), and 10° valgus (TAS 99°)] were created by software Mimics 21.0, Geomagic Wrap 2021, Solidworks 2017, and Workbench 17.0. The 290 N vertical downward force was applied to the upper surface of the tibia and 60 N vertical downward force to the upper surface of the fibula. Von Mises stress distribution and stress peak were calculated. Results The finite element model of normal TAS was basically consistent with biomechanics of the foot. According to biomechanical analysis, the maximum stress of the varus model appeared in the medial tibiotalar joint surface and the medial part of the top tibiotalar joint surface. The stress distribution of talofibular joint surface and the lateral part of the top tibiotalar joint surface were uniform. In the normal model, the stress distributions of the talofibular joint surface and the tibiotalar joint surface were uniform, and no obvious stress concentration was observed. The maximum stress in the 5° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress distribution of medial tibiotalar joint surface was uniform. The maximum stress of the 10° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress on the medial tibiotalar joint surface increased. Conclusion With the increase of valgus, the stress of ankle joint gradually shift outwards, and the stress concentration tends to appear. There was no obvious obstruction of fibula with 10° TAS correction. However, when TAS correction exceeds 10° and continues to increase, the obstruction effect of fibula becomes increasingly significant.

    Release date:2023-07-12 09:34 Export PDF Favorites Scan
  • Finite-element Investigation on Center of Resistance of Maxillary Anterior Teeth

    A three-dimensional finite element model of premaxillary bone and anterior teeth was established with ANSYS 13.0. The anterior teeth were fixed with strong stainless labial archwire and lingual frame. In the horizontal loading experiments, a horizontal retraction force of 1.5 N was applied bilaterally to the segment through hooks at the same height between 7 and 21 mm from the incisal edge of central incisor; in vertical loading experiments, a vertical intrusion force of 1.5 N was applied at the midline of lingual frame with distance between 4 and 16 mm from the incisal edge of central incisor. After loading, solution was done and displacement and maximum principle stress were calculated. After horizontal loading, lingual displacement and stress in periodontal membrane (PDM) was most homogeneous when the traction force was 14 mm from the edge of central incisor; after vertical loading, intrusive displacement and stress in PDM were most homogeneous when the traction force was 12 mm from the incisal edge of central incisor. The results of this study suggested that the location of center of resistance (CRe) of six maxillary anterior teeth is about 14 mm gingivally and 12 mm lingually to incisal edge of central incisor. The location can provide evidence for theoretical and clinical study in orthodontics.

    Release date: Export PDF Favorites Scan
  • Development and Validation of a C0-T1 Three-dimensional Finite Element Model of a Healthy Person Under Physiologic Loads

    A comprehensive, geometrically accurate, nonlinear C0-T1 three-dimensional finite element (FE) model was developed for the biomechanical study of human cervical spine and related disorders. The model was developed with anatomic detail from the computed tomography (CT) images of a 46-year old female healthy volunteer, and applied the finite element model processing softwares such as MIMICS13.1, Hypermesh11.0, Abaqus 6.12-1, etc., for developing, preprocessing, calculating and analysing sequentially. The stress concentration region and the range of motion (ROM) of each vertebral level under axial rotation, flexion, extension, and lateral bending under physiologic static loadings were observed and recorded. The model was proven reliable, which was validated with the range of motion in previous published literatures. The model predicted the front and side parts of the foramen magnum and contralateral pedicle and facet was the stress concentration region under physiological loads of the upper spine and the lower spine, respectively. The development of this comprehensive, geometrically accurate, nonlinear cervical spine FE model could provide an ideal platform for theoretical biomechanical study of human cervical spine and related disorders.

    Release date: Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content