Objective To explore the effects of intravenous treprostinil in different doses on the hemodynamics and postoperative outcomes after high-risk total cavo-pulmonary connection (TCPC). MethodsFrom 2018 to 2021, among 189 patients who underwent TCPC in the Department of Pediatric Cardiac Surgery of Fuwai Hospital, 26 high-risk patients who received the intravenous treprostinil therapy were retrospectively analyzed. There were 12 males and 14 females, with an age of 4 (3, 6) years and a weight of 17.6±6.2 kg. The patients were divided into two groups: a high-dose group [15 patients, maintaining dose>10 ng/(kg·min)] and a low-dose group [11 patients, maintaining dose≤10 ng/(kg·min)]. The hemodynamics before treprostinil using and during the first 24 hours after reaching the maintaining dose of treprostinil, and postoperative outcomes of the two groups were investigated. ResultsThe incidence of heterotaxia was higher in the high-dose group (66.7% vs. 18.2%, P=0.021). During the observation period, the mean pulmonary artery pressure decreased from 11.9±3.6 mm Hg to 11.0±3.3 mm Hg in the low-dose group (P=0.013), and from 12.9±4.7 mm Hg to 10.2±3.4 mm Hg in the high-dose group (P=0.001). The decreasing effect in the high-dose group was better than that in the low-dose group (P=0.010). There was no statistical difference in the postoperative outcomes between the two groups (P>0.05). In terms of side effects, patients needed temporarily increased dosage of vasoactive drugs to maintain stable blood pressure during 6-12 h after treprostinil therapy in the high-dose group. ConclusionIn patients after high-risk TCPC, intravenous high-dose treprostinil has a better therapeutic effect on reducing pulmonary artery pressure. However, it should be noted that increased dosage of vasoactive agents may be required to maintain blood pressure stability in patients with high-dose treprostinil.
Heart failure is one kind of cardiovascular disease with high risk and high incidence. As an effective treatment of heart failure, artificial heart is gradually used in clinical treatment. Blood compatibility is an important parameter or index of artificial heart, and how to evaluate it through hemodynamic design and in vitro hemolysis test is a research hotspot in the industry. This paper first reviews the research progress in hemodynamic optimization and in vitro hemolysis evaluation of artificial heart, and then introduces the research achievements and progress of the team in related fields. The hemodynamic performance of the blood pump optimized in this paper can meet the needs of use. The normalized index of hemolysis obtained by in standard vitro hemolysis test is less than 0.1 g/100 L, which has good hemolysis performance in vitro. The optimization method described in this paper is suitable for most of the development of blood pump and can provide reference for related research work.
Objective To establish a personalized Stanford type B aortic dissection numerical simulation model, and using computational fluid dynamics (CFD) numerical simulation to obtain the hemodynamic behavior and law of the type B aortic dissection at different stages of development. Methods Based on the theory of three-dimensional model reconstruction, we used CT images of a patient with type B aortic dissection in the Xiamen Cardiovascular Hospital of Xiamen University, relevant medical image processing software to reconstruct a personalized aortic three-dimensional model, and CFD to reconstruct the model which was simulated in fluid mechanics. Results The three-dimensional reconstruction model could intuitively observe the changing trend of the false cavity at different stages of the dissection development. Through fluid mechanics simulation, the blood flow rate, pressure, wall shear stress, vascular wall Von Mises stress and other parameters at different stages of the dissection development were obtained. Conclusion The hemodynamic behavior and law of relevant parameters in the development stage of aortic dissection are analyzed. The combination of the values of relevant parameters and clinical medical detection and diagnosis can well predict the development of the disease, and finally provide more theories and methods for the scientific diagnosis of aortic dissection.
This study analyzed the inherent relation between arterial blood mass flow and muscle atrophy of residual limb to provide some necessary information and theoretical support for the clinical rehabilitation of lower limb amputees. Three-dimensional arterial model reconstruction was performed on both intact side and residual limb of a unilateral transfemoral amputee who is the subject. Then hemodynamic calculation was carried out to comparatively analyze the mass flow state at each arterial outlet of both lower extremities. The muscle atrophy ratio of residual limb was calculated by measuring the cross-sectional area of bilateral muscles. Based on the blood supply relationship, the correlation between arterial blood flow reduction ratio and muscle atrophy ratio was discussed. The results showed that the mass flow of superficial femoral arteries and lateral circumflex femoral arteries severely reduced. Meanwhile rectus femoris, vastus lateralis and vastus medialis which were fed by these arteries showed great atrophy too. On the contrary, the mass flow of deep femoral arteries and medial femoral circumflex arteries slightly reduced. Meanwhile gracilis, adductor longus, long head of biceps which were fed by these arteries showed mild atrophy too. These results indicated that there might be a positive and promotion correlation between the muscle atrophy ratio and the blood mass flow reduction ratio of residual limb during rehabilitation.
Objective To study the hemodynamic characteristics of concealed perforator flap in mini-pigs by ultrasonic Doppler technique. Methods Seven 7-month-old mini-pigs, weighing 20-25 kg, were included in the study. The saphenous artery perforator flap (group A, n=4), saphenous artery concealed perforator flap (group B, n=5), and saphenous artery concealed perforator flap combined with sarcolemma (group C, n=5) models were established randomly on both hind limbs of pigs. The pigs and flap survival conditions were observed after operation. The percentage of flap survival area was calculated by Photoshop CS5 software at 5 days after operation. Ultrasonic Doppler technique was performed on the flaps before operation and at immediate, 3 days, and 5 days after operation to record the hemodynamic changes of the flaps. The hemodynamic indicators of saphenous artery (inner diameter, peak systoli velocity, resistance index, and blood flow) and saphenous vein (inner diameter, maximum velocity, and blood flow) were recorded. Results At 1 day after operation, 1 pig died of infection, and the rest survived until the experiment was completed. Finally, the 3 flaps of group A, 4 of group B, and 5 of group C were included in the study. The flaps of the 3 groups all showed swelling after operation, which was most significant at 3 days. At 3 days after operation, the flaps in group B showed partial bruising and necrosis. At 5 days after operation, the flaps in groups A and C were basically alive, and the necrosis area of flap in group B increased further. The percentage of flap survival area in groups A, B, and C were 99.7%±0.5%, 74.8%±26.4%, and 100%, respectively. The percentage of flap was significantly lower in group B than in groups A and C (P<0.05). There was no significant difference between groups A and C (P>0.05). There were significant differences in the hemodynamic indicators of saphenous artery and vein between different time points in 3 groups (P<0.05). There was no significant difference in each indicator between groups at each time point (P>0.05). Conclusion Both the saphenous artery concealed perforator flap and the flap combined with sarcolemma have stable blood flow, but the survival area of the latter was better than the former.
This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.
Vena cava filter is a filter device designed to prevent pulmonary embolism caused by thrombus detached from lower limbs and pelvis. A new retrievable vena cava filter was designed in this study. To evaluate hemodynamic performance and thrombus capture efficiency after transplanting vena cava filter, numerical simulation of computational fluid dynamics was used to simulate hemodynamics and compare it with the commercialized Denali and Aegisy filters, and in vitro experimental test was performed to compare the thrombus capture effect. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, wall shear stress on the wall of the filter, the area ratio of the high and low wall shear stress area and thrombus capture efficiency when the thrombus diameter was 5 mm, 10 mm, 15 mm and thrombus content was 10%, 20%, 30%, respectively. Meanwhile, the thrombus capture effects of the above three filters were also compared and evaluated by in vitro experimental data. The results showed that the Denali filter has minimal interference to blood flow after implantation, but has the worst capture effect on 5 mm small diameter thrombus; the Aegisy filter has the best effect on the trapping of thrombus with different diameters and concentrations, but the low wall shear stress area ratio is the largest; the new filter designed in this study has a good filtering and capture efficiency on small-diameter thrombus, and the area ratio of low wall shear stress which is prone to thrombosis is small. The low wall shear stress area of the Denali and Aegisy filters is relatively large, and the risk of thrombosis is high. Based on the above results, it is expected that the new vena cava filter designed in this paper can provide a reference for the design and clinical selection of new filters.
Surgical intervention for chronic thoracoabdominal aortic dissecting aneurysms (cTAADA) is regarded as one of the most challenging procedures in the field of vascular surgery. For nearly six decades, open repair predominantly utilizing prosthetic grafts has been the treatment of choice for cTAADA. With advances in minimally invasive endovascular technologies, two novel surgical approaches have emerged: total endovascular stent-graft repair and hybrid procedures combining retrograde debranching of visceral arteries with endovascular stent-graft repair (abbreviated as hybrid procedure). Although total endovascular stent-graft repair offers reduced trauma and quicker recovery, limitations persist in clinical application due to hostile anatomical requirements of the aorta, high costs, and the lack of universally available stent-graft products. Hybrid repair, integrating the minimally invasive ethos of endovascular repair with visceral artery debranching techniques, has increasingly become a significant surgical modality for managing thoracoabdominal aneurysms, especially in cases unsuitable for open surgery or total endovascular treatment due to anatomical constraints such as aortic tortuosity or narrow true lumens in dissections. Recent enhancements in hybrid surgical approaches include ongoing optimization of visceral artery reconstruction strategies based on hemodynamic analyses, and exploration of the comparative benefits of staged versus concurrent surgical interventions.
[Abstract]The number of lung transplantation is gradually increasing worldwide, which brings new challenges to the multi-disciplinary team of lung transplantation. The prognosis of lung transplant recipients is seriously affected by the pathophysiological state of specific lung diseases and perioperative risk factors. It is of great significance for these patients to optimize perioperative management according to these factors. Recently, several expert consensus have been published regarding anesthesia management of lung transplantation. Based on the current evidence and clinical practice of West China Hospital, this review summarizes the key points of anesthesia management for lung transplant recipients to guide anesthesiologists' clinical practice.
Objective To investigate the correlation of intracranial arachnoid cyst (IAC) with epilepsy and the possible mechanism of seizure induced by IAC. Methods Patients with IAC, who were treated in West China Hospital of Sichuan University between January 2009 and January 2019, were included and divided into IAC with epilepsy group and IAC without epilepsy group according to whether they were diagnosed with epilepsy. We collected the IAC location information of all subjects after the establishment of a three-dimensional spatial coordinate system of MRI images. Computational fluid dynamics technology was used to establish a blood vessel model in cyst area and perform hemodynamic analysis basing on contrast-enhanced CT images. Results A total of 72 patients were enrolled, including 24 in the IAC with epilepsy group and 48 in the IAC without epilepsy group. There was no significant difference between the two groups in terms of sex, age, IAC location, the volumes or the maximum diameters of IAC (P>0.05). Consecutive areas formed by the seven high-risk areas found in the IAC with epilepsy group were located in the temporal area. The seven high-risk areas were simultaneous IAC location in 5 patients in the IAC with epilepsy group and in 1 patient in the IAC without epilepsy group, and the difference was statistically significant (χ2=5.114, P=0.024). Comparison of the hemodynamic parameters between the two types of vascular models revealed similar pressure changes and blood pressure parameters, with lower blood flow and higher mean vascular wall shear stress in the IAC with epilepsy group. Conclusions IAC may cause epilepsy by increasing adjacent blood vessel stenosis and blood vessel wall shear stress through cyst space-occupying effect. The most common location of IAC with epilepsy is the temporal area. The occupying effect of IAC should be considered in the location of epileptogenic foci before surgery for IAC patients with epilepsy.