west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "long non-coding RNA" 24 results
  • Progress in regulation of long non-coding RNA on malignant biological behavior of gallbladder cancer

    ObjectiveTo summarize the research progress of long non-coding RNA (lncRNA) in the regulation of malignant biological behavior of gallbladder cancer so as to provide references for its related research.MethodThe relevant literatures about studies of lncRNA in gallbladder cancer in recent years were reviewed.ResultsThe recent studies had shown that 19 lncRNAs associated with gallbladder cancer had played the important roles in regulating tumor cell proliferation, migration, invasion, apoptosis, “sponge” miRNAs, chemoresistance, and tumor metastasis. Among them, most lncRNAs tended to have carcinogenic properties, only a few had anticarcinogenic effect. Although the research suggested the mechanism and role of lncRNA to promote or inhibit the occurrence and development of gallbladder cancer, the current research on its mechanism was still limited. In addition, some lncRNAs were found to be specifically expressed in the serum of patients with gallbladder cancer, so which were expected to become biomarkers for tumor diagnosis and prognosis.ConclusionslncRNAs associated with gallbladder cancer have carcinogenic or anticarcinogenic effect, or chemoresistance. They play potential roles in diagnosis, prognosis, and (or) treatment of tumors, but molecular mechanisms of their effects are still limited.

    Release date:2020-12-25 06:09 Export PDF Favorites Scan
  • Advancement of long non-coding RNA in papillary thyroid carcinoma

    Objective The aim of this study is to review the association between long non-coding RNA (lncRNA) and papillary thyroid carcinoma (PTC). Method The relevant literatures about lncRNA associated with PTC were retrospectively analyzed and summarized. Results The expression levels of noncoding RNA associated with MAP kinase pathway and growth arrest (NAMA), PTC susceptibility candidate 3 (PTCSC3), BRAF activated non-coding RNA (BANCR), maternally expressed gene 3 (MEG3), NONHSAT037832, and GAS8-AS1 in PTC tissues were significantly lower than those in non-thyroid carcinoma tissues. The expression levels of ENST00000537266, ENST00000426615, XLOC051122, XLOC006074, HOX transcript antisense RNA (HOTAIR), antisense noncoding RNA in the INK4 locus (ANRIL), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in PTC tissues were upregulated in PTC tissues, comparing with the non-thyroid carcinoma tissues. These lncRNAs were possibly involved in cell proliferation, migration, and apoptosis of PTC. Conclusion LncRNAs may provide new insights into the molecular mechanism and gene-targeted therapy of PTC and become new molecular marker for the diagnosis of PTC.

    Release date:2017-08-11 04:10 Export PDF Favorites Scan
  • Expressed analysis and functional studies of differential expressed lncRNA genes associated with cholesterol gallstone

    ObjectiveTo explore the differential expressed lncRNA genes associated with formation of cholesterol gallstone, and analyze the biological functions of differential expressed lncRNA through bioinformatics.MethodsA total of 24 C57BL/6 mice were randomly divided into normal control group (n=8) and lithogenic group (n=16), which were treated with chow diets and lithogenic diets respectively for 5 weeks. After 5 weeks, mice of the lithogenic group were randomly divided into model control group (n=8) and ursodeoxycholic acid treatment group (n=8). Afterwards, mice of the normal control group were still fed with chow diets, mice of the model control group were fed with lithogenic diets, mice of the ursodeoxycholic acid treatment group were fed with ursodeoxycholic acid. After 2 weeks, collected liver tissues and gallbladder bile from the three groups, and observed gallbladder gross sample and analyzed lipids component of gallbladder bile, meanwhile detected the differential expressed lncRNA and analyzed the biological functions of differential expressed lncRNA through bioinformatics, including Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis.ResultsWe successfully constructed the mice model of cholesterol gallstone. Total cholesterol level of gallbladder in the model control group had significantly higher than those of the normal control group and ursodeoxycholic acid treatment group (P<0.05), yet there was no significant difference between the normal control group and ursodeoxycholic acid treatment group (P=0.59). The levels of total bile acid, total bilirubin, and direct bilirubin had no significant difference among the three groups (P>0.05). There were 49 kinds of common overlapped difference lncRNA between the ursodeoxycholic acid treatment group and the model control group through differential expression analysis of lncRNA in liver tissues of the mice in three groups. GO and KEGG path analysis were performed separately by differential expressed lncRNA, and 88 kinds of GO terms and 18 kinds of pathways were significantly enriched from the model control group and the normal control group, 205 kinds of GO terms and 20 kinds of pathways were significantly enriched from the ursodeoxycholic acid treatment group and the normal control group.ConclusionsUrsodeoxycholic acid has therapeutic effect for cholesterol gallstone. Differential expressed lncRNAs play an important regulatory role in the formation of cholesterol gallstone and the prevention of gallstone formation by ursodeoxycholic acid treatment, which further lay the foundation in discussing specific mechanism regulated by lncRNA.

    Release date:2019-06-05 04:24 Export PDF Favorites Scan
  • A nomogram prognosis prediction model for programmed cell death of hepatocellular carcinoma based on TCGA database

    ObjectiveTo screen long non-coding RNAs (lncRNAs) relevant to programmed cell death (PCD) and construct a nomogram model predicting prognosis of hepatocellular carcinoma (HCC). MethodsThe HCC patients selected from The Cancer Genome Atlas (TCGA) were randomly divided into training set and validation set according to 1∶1 sampling. The lncRNAs relevant to PCD were screened by Pearson correlation analysis, and which associated with overall survival in the training set were screened by univariate Cox proportional hazards regression (abbreviation as “Cox regression”), and then multivariate Cox regression was further used to analyze the prognostic risk factors of HCC patients, and the risk score function model was constructed. According to the median risk score of HCC patients in the training set, the HCC patients in each set were assigned into a high-risk and low-risk, and then the Kaplan-Meier method was used to draw the overall survival curve, and the log-rank test was used to compare the survival between the HCC patients with high-risk and low-risk. At the same time, the area under receiver operating characteristic curve (AUC) was used to evaluate the value of the risk score function model in predicting the 1-, 3-, and 5-year overall survival rates of HCC patients in the training set, validation set, and integral set. Then the nomogram was constructed based on the risk score function model and factors validated in clinic, and its predictive ability for the prognosis of HCC patients was evaluated. ResultsA total of 374 patients with HCC were downloaded from the TCGA, of which 342 had complete clinicopathologic data, including 171 in the training set and 171 in the validation set. Finally, 8 lncRNAs genes relevant to prognosis (AC099850.3, LINC00942, AC040970.1, AC022613.1, AC009403.1, AL355974.2, AC015908.3, AC009283.1) were screened out, and the prognostic risk score function model was established as follows: prognostic risk score=exp1×β1+exp2×β2...+expi×βi (expi was the expression level of target lncRNA, βi was the coefficient of multivariate Cox regression analysis of target lncRNA). According to this prognostic risk score function model, the median risk score was 0.89 in the training set. The patients with low-risk and high-risk were 86 and 85, 86 and 85, 172 and 170 in the training set, validation set, and integral set, respectively. The overall survival curves of HCC patients with low-risk drawn by Kaplan-Meier method were better than those of the HCC patients with high-risk in the training set, validation set, and integral set (P<0.001). The AUCs of the prognostic risk score function model for predicting the 1-, 3-, and 5-year overall survival rates in the training set were 0.814, 0.768, and 0.811, respectively, in the validation set were 0.799, 0.684, and 0.748, respectively, and in the integral set were 0.807, 0.732, and 0.784, respectively. The multivariate Cox regression analysis showed that the prognostic risk score function model was a risk factor affecting the overall survival of patients with HCC [<0.89 points as a reference, RR=1.217, 95%CI (1.151, 1.286), P<0.001]. The AUC (95%CI) of the prognostic risk score function model for predicting the overall survival rate of HCC patients was 0.822 (0.796, 0.873). The AUCs of the nomogram constructed by the prognostic risk score function model in combination with clinicopathologic factors to predict the 1-, 3-, and 5-year overall survival rates were 0.843, 0.839, and 0.834. The calibration curves of the nomogram of 1-, 3-, and 5-year overall survival rates in the training set were close to ideal curve, suggesting that the predicted overall survival rate by the nomogram was more consistent with the actual overall survival rate. ConclusionThe prognostic risk score function model constructed by the lncRNAs relevant to PCD in this study may be a potential marker of prognosis of the patients with HCC, and the nomogram constructed by this model is more effective in predicting the prognosis (overall survival) of patients with HCC.

    Release date:2023-08-22 08:48 Export PDF Favorites Scan
  • Research progress of lncRNA on regulation of energy metabolism in tumor cells

    Objective To summarize the latest research progress of tumor energy metabolism regulated by long non-coding RNA (lncRNA). Method Literatures about the recent studies on the bioenergetic metabolic mechanisms regulated by lncRNA in tumor cells were reviewed according to the results searched from PubMed database, Springer database, HighWire database, and so on. Results Aerobic glycolysis (Warburg effect) was regarded as the most important characteristics of energy metabolism in tumor cells. lncRNA could regulate many key progressions involved energy metabolism in tumor cells, such as glucose metabolism, lipid metabolism, and glutamine metabolism, resulting in accelerated uptake of glucose, decomposition of glutamine, and formation of lipid. Conclusions The functions and mechanisms of energy metabolism in tumor cells regulated by lncRNA are entirely unclear. The role of lncRNA played in cancer needs to be understood, which may contribute to new tumor biomarker detection and effective treatment strategies.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration

    ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.

    Release date:2021-08-30 02:26 Export PDF Favorites Scan
  • Regulation of long non-coding RNA in cartilage injury of osteoarthritis

    ObjectiveTo summarize the regulatory effect of long non-coding RNA (lncRNA) on osteoarthritis (OA) cartilage injury.MethodsThe molecular functions and mechanisms of lncRNA were introduced and its regulatory effects on the pathological processes of OA were elaborated by referring to the relevant literature at domestic and abroad in recent years.ResultsThe pathological characteristics of OA are degeneration of articular cartilage and inflammation of synovial tissue, but its etiology and pathological mechanism have not been clarified. lncRNA is a kind of heterogeneous non-coding RNA, which plays a regulatory role in many inflammation-related diseases and exerts a wide range of biological functions. lncRNA is a regulator involved in the pathogenesis of OA, and is abnormally expressed in OA cartilage, leading to the degeneration of the extracellular matrix of cartilage.ConclusionAt present, there have been preliminary studies on the pathological effects of lncRNA in regulating OA and the biological functions of chondrocytes. However, the pathogenesis of lncRNA and its regulatory network in OA and the way in which it regulates inflammatory pathways are still unclear, and further exploration is needed.

    Release date:2020-11-27 06:47 Export PDF Favorites Scan
  • Recent advances of related biomarkers in early diagnosis of gastric cancer

    ObjectiveTo understand the research progress of related biomarkers in early diagnosis of gastric cancer in recent years.MethodThe domestic and foregin literatures on studies of biomarkers of early diagnosis of gastric cancer in recent years were reviewed.ResultsAt present, the sensitivity and specificity of serum tumor biomarkers of gastric cancer such as CEA and CA19-9 were lower, so the molecular markers that could predict, screen, and diagnose gastric cancer in the early stage were further explored. The recent studies suggested that microRNAs, long non-coding RNAs, circular RNAs, exosome, etc. molecular markers in early diagnosis of gastric cancer had better prospects of clinilal application.ConclusionWith the continuous development of molecular biology technology, the values of microRNAs, long non-coding RNAs, circular RNAs, DNA, etc. in early diagnosis of gastric cancer would be further explored.

    Release date:2021-09-06 03:43 Export PDF Favorites Scan
  • Association between polymorphism of long non-coding RNA maternally expressed gene 3and risk of gastric cancer

    Objective To explore relationship between long non-coding RNA maternally expressed gene 3 (MEG3) polymorphisms and risk of gastric cancer. Methods One hundred and seventy-two Han patients with gastric cancer (gastric cancer group) and 224 Han individuals for physical examination (control group) in the Yunnan Cancer Hospital from March 2013 to October 2017 were selected as subjects. The rs7158663 and rs4081134 polymorphisms of the MEG3 were genotyped by using a TaqMan technique. The associations between the 2 polymorphisms and the risk of the gastric cancer and its clinical features were analyzed using the SPSS software. Results The frequencies of the AG+AA genotype and the A allele of the MEG3 rs7158663 in the gastric cancer group were significantly higher than those in the control group using the GG genotype and G allele as a reference respectively [adjusted OR=1.71, 95%CI (1.14, 2.56), P=0.010; adjusted OR=1.58, 95%CI (1.15, 2.19), P=0.005] after the Chi-square test and the adjustment of age and gender. The frequencies of the AG+AA genotype and the A allele of the MEG3 rs4081134 had no significant differences between the gastric cancer group and the control group (P>0.017). Moreover, the polymorphisms of the MEG3 rs7158663 and rs4081134 were not associated with the clinical features of the gastric cancer (P>0.017). Conclusion MEG3 rs7158663 AG+AA genotype might be one of susceptibility gene of gastric cancer in Chinese Han population.

    Release date:2018-11-16 01:55 Export PDF Favorites Scan
  • Diagnostic value of LncRNAs for hepatocellular carcinoma

    ObjectiveTo understand advances in diagnostic value of long non-coding RNA (LncRNA) in hepatocellular carcinoma (HCC) and to find a useful tumor marker for early diagnosis of HCC.MethodThe recent literatures relevant the LncRNA in the HCC were reviewed and summarized.ResultsThe LncRNA could be detected in the blood and urine of the patients by the RNA immunoprecipitation, sequencing technology, gene chip, real-time quantitative PCR, and other techniques. With the rise of RNA sequencing technology, the number of identified LncRNAs had increased rapidly, and the remarkable progress had been made in the field of liver diseases. At present, the LncRNA related to HCC mainly included the urothelial cancer associated 1, highly up-regulated in liver cancer, metastasis-associated lung adenocarcinoma transcript 1, HOXA transcript at the distal tip, H19, SPRY4 intronic transcript 1, plasma-cytoma variant translocation gene 1, uc002mbe.2, uc007biz.1, etc., which were stable in the blood or urine and abnormally expressed in the HCC, alone or as a supplement to alpha-fetoprotein could obviously improve the sensitivity and specificity of diagnosis of HCC, even increased the sensitivity to 100%.ConclusionsLncRNA is specifically expressed in HCC and is expected to be a novel biomarker for early diagnosis of HCC. However, LncRNA has many types, diverse structures, and complex molecular regulation mechanisms. It is very difficult to find a strong combination or combinations to replace or supplement traditional biomarkers and to be clinically useful further efforts. It is believed that with deepening of LncRNA research in HCC, it will have a broader prospect in early screening, diagnosis, and prognosis of HCC.

    Release date:2019-09-26 01:05 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content