【Abstract】Objective To investigate the role of VEGF and its soluble VEGF receptor ( sVEGFR-1) in pathogenesis of acute lung injury ( ALI) induced by immersion in seawater after open chest trauma. Methods Sixteen hybridized adult dogs were randomly divided into control group and seawater group. The control group only suffered from open chest trauma, whereas the seawater group were exposed to seawater after open chest trauma. Blood samples were collected at the 0, 2, 4, 6, 8 h after trauma for measurement of white blood cell count, arterial blood gas, plasma osmotic pressure ( POP) , electrolyte concentration, IL-8, vWF, VEGF and sVEGFR-1 levels. The lungs tissue and BALF was collected at 8 h after trauma. Pathological changes of the lung was observed under light microscope by HE staining. Meanwhile VEGF and sVEGFR-1 levels were measured in BALF and lung tissue homogenate. Total protein concentrations in plasma and BALF were measured to calculate the pulmonary penetration index ( PPI) . Results The lung of the seawater group showed interstitial mononuclear cell and neutrophil infiltration, interstitial edema, and vascular congestion. VEGF and sVEGFR-1 were significantly increased in the plasma, while VEGF was significantly reduced in the lung tissues and BALF. The levels of IL-1β, IL-8 and vWF, just as the level of VEGF, were significantly increased in the plasma. Meanwhile, the POP and electrolyte concentration were significantly increased. In the plasma, the responses of VEGFs during the early onset of ALI induced by immersion in seawater after open chest trauma were consistent with the POP and PPI. Conclusions High plasma levels and low BALF/ lung tissue levels of VEGFs is a distinguishing characteristic during the early onset of ALI induced by immersion in seawater after open chest trauma. VEGF may be a novel biomarker which has an important role in the development of ALI.
ObjectiveTo explore the mechanism of lung injury in Sprague-Dawley (SD) rats induced by acute organic phosphorus pesticides (AOPP) by observing the changes of the blood serum nuclear factor (NF)-κB consistence, NF-κB level of lung tissue and lung coefficient. MethodNinety-six healthy male SD rats (six weeks old) were randomly divided into group A (control, n=48) and group B (poison, n=48). The rats of group B were given omethoate by gavage (45 mg/kg), and the rats of group A accepted normal saline. Then the rats were killed at designated observing points (30 minutes; 3, 6, 12, 24, and 48 hours), and the lung coefficient, blood serum NF-κB consistence and NF-κB level of lung tissue were measured. At the same time, we observed the pathological changes of the rats' lung tissue. ResultsCompared with group A, blood serum NF-κB consistence, NF-κB level of lung tissue and the level of lung coefficient in group B were significantly higher (P<0.01). The lung tissues of group A were normal at each time point, but in group B, the lung pathological changes gradually appeared 30 minutes later with pulmonary interstitial engorging, alveolar septum widening and some alveolus being full of red blood cells, and this situation reached its peak at hour 12. Then it gradually mitigated from 24 to 48 hours. ConclusionThere are significant increases in blood serum NF-κB consistence and NF-κB level in lung tissues in rats with lung injury induced by omethoate poisoning. The NF-κB may play a role in the process of lung injury induced by organophosphorus pesticide.
Objective To explore the protective effects of liver X receptor-αactivator ( LXRα)T0901317 on rats with acute lung injury ( ALI) . Methods Seventy-two male Wistar rats were randomly divided into three goups, ie. a control group, a LPS group, and a T0901317 group. Artery blood gas analysis,lung tissue wet/dry weight ratio,myeloperoxidase activity, and lung histopathological changes were measured.The expressions of LXRαand TNF-αmRNA in lung tissue were detected by RT-PCR. The protein levels ofTNF-αand LXRαwere examined with ELISA and immunohistochemistry, respectively. Results In the ALI rats, PaO2 decreased, lung W/D weight ratio and myeloperoxidase activity increased significantly compared with the control group ( P lt; 0. 05) . Histopathological examination also revealed obvious lung injury. In theLPS group, the expression of TNF-αmRNA in lung tissue and the level of TNF-αprotein in lung homogenate and serum increased markedly( all P lt; 0. 05) while the expression of LXR-αmRNA declined significantly ( P lt; 0. 05) . Immunohistochemical staining showed that lung tissues of the normal rats expressed LXRαsignificantly but in the LPS group the expression of TNF-αand LXR-αin lung tissue decreased markedly ( P lt;0. 05) . After the treatment with T0901317, the expressions of LXR-αin lung tissues were significantly higher than those in the LPS group both at the mRNA and the protein level ( P lt; 0. 05) . Conclusion T0901317 plays an anti-inflammatory effect through up-regulating the expression of LXR-αand suppressing the expression of TNF-α, thus reduces the infiltration and aggregation of inflammatory cells in lung tissue.
Objective To explore the potential protective effect in vivo of Edaravone, a free radical scavenger on model of acute lung injury in rats with sepsis. Methods Twenty-four male Wistar rats were randomly divided into three groups, ie. a control group( NS group) , a model group( LPS group) , a Edaravone treatment group( ED group) . ALI was induced by injecting LPS intravenously( 10 mg/ kg) in the LPS group and the ED group. Meanwhile the ED group was intravenously injected with Edaravone( 3 mg/ kg) . The NS group was injected with normal saline as control. The lung tissue samples were collected at 6 h after intravenous injection. The wet / dry ( W/D) weight ratio of lung tissue was measured. The levels of myeloperoxidase ( MPO) , malondialdehyde ( MDA ) and superoxide dismutase ( SOD) in lung tissue homogenate were assayed. The pathological changes and expression of nuclear factor-kappa B( NF-κB) in lung tissue were also studied. Results Compared with the NS group, The W/D, pathological scores, NF-κB expression, MPO and MDA levels in the LPS group were significantly higher( all P lt; 0. 01) , and the level of SOD was apparently lower( P lt; 0. 01) . The W/D, pathological scores, NF-κB expression, MPO and MDA levels in the ED group were significantly lower than those in the LPS group( all P lt; 0. 01) and higher than those in the NS group( all P lt; 0. 01) . And the level of SOD in lung tissue of the ED group was higher than that in the LPS group and lower than that in the NS group ( P lt; 0. 01) . Conclusions Edaravone has protective effect on ALI rat model. The mechanismmay be related to its ability of clearing the reactive oxygen species, inhibiting the activation of the signal pathway of NF-κB and inflammatory cascade.
Objective To investigate the possible role of ulinastatin(UTI) in f lipopolysacccharide (LPS)-induced acute lung injury(ALI).Methods Thirty male SD rats were randomly divided into three groups,ie.a normal control group,a LPS group and a LPS plus UTI group.The rats were injected with 1 mL of normal saline via caudal vein in the control group,with LPS 5 mg/kg via caudal vein in the LPS group,and with UTI 100000 U/kg shortly after injection with LPS in the LPS plus UTI group.The rats were sacrificed 4 h after the injection.Lung wet/dry weight ratio was measured.IL-18 level in serum and lung tissue was determined by ELISA and the expression of NF-κB in lung tissue was determined by immunohistochemistry.Pathological changes of rats’ lung were observed by optical and electron microscope.Results Compared with the control group,IL-18 level in serum and NF-κB expression in lung tissue were significantly higher in the LPS group(Plt;0.01).The IL-8 level was somewhat elevated in the LPS+UTI group but with no significant difference from that in control group was found (Pgt;0.05).The lung inflammation in the LPS+UTI group was milder than that in the LPS rats.Conclusion UTI can alleviate LPS-induced inflammatory reaction and lung injury in rat model.
Objective To identify genes of lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice base on bioinformatics and machine learning. Methods The acute lung injury dataset (GSE2411, GSE111241 and GSE18341) were download from the Gene Expression Database (GEO). Differential gene expression analysis was conducted. Gene ontology (GO) analysis, KEGG pathway analysis, GSEA enrichment analysis and protein-protein interaction analysis (PPI) network analysis were performed. LASSO-COX regression analysis and Support Vector Machine Expression Elimination (SVM-RFE) was utilized to identify key biomarkers. Receiver operator characteristic curve was used to evaluate the diagnostic ability. Validation was performed in GSE18341. Finally, CIBERSORT was used to analyze the composition of immune cells, and immunocorrelation analysis of biomarkers was performed. Results A total of 29 intersection DEGs were obtained after the intersection of GSE2411 and GSE111241 differentially expressed genes. Enrichment analysis showed that differential genes were mainly involved in interleukin-17, cytokine - cytokine receptor interaction, tumor necrosis factor and NOD-like receptor signaling pathways. Machine learning combined with PPI identified Gpx2 and Ifi44 were key biomarkers. Gpx2 is a marker of ferroptosis and Ifi44 is an type I interferon-induced protein, both of which are involved in immune regulation. Immunocorrelation analysis showed that Gpx2 and Ifi44 were highly correlated with Neutrophils, TH17 and M1 macrophage cells. Conclusion Gpx2 and Ifi44 have potential immunomodulatory abilities, and may be potential biomarkers for predicting and treating ALI in mince.
ObjectiveTo investigate the effect and mechanism of microRNA (miR)-146a-3p on acute lung injury (ALI) and inflammation induced by lipopolysaccharide (LPS) in mice.MethodsThirty-two BALB/c mice were randomly divided into sham group, ALI group, ALI+agomiR-negative control (NC) group, ALI+miR-146a-3p agonist (agomiR-146a-3p) group, with 8 mice in each group. The ALI model was established by instilling 5 mg/kg LPS into the lungs through the trachea, and the same amount of saline was instilled slowly in the sham group. The mice in the ALI+agomiR-146a-3p group/NC group were injected with 8 mg/kg agomiR-146a-3p or agomiR-NC respectively through the tail vein, once a day, for 3 days. The sham group and the model group were given the same amount of normal saline injection through the tail vein. After 24 hours, they were sacrificed and lung tissues were collected. The expressions of miR-146a-3p and toll-like receptor 4 (TLR4) mRNA in lung tissue were detected by RT-qPCR, the expression levels of TLR4, cleaved caspase-3, Bcl-2 related X protein (Bax), B cell lymphoma-2 (Bcl-2) protein in lung tissue were detected by Western blot. The changes of lung pathology were observed by hematoxylin-eosin staining. The apoptosis of lung tissue was detected by TdT-mediated dUTP nick-end labeling. The expression levels of IL-1β, IL-6 and TNF-α in lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). The dual luciferase reporting system verified the targeting relationship between miR-146a-3p and TLR4 in MRC-5 cells. MRC-5 cells were divided into control group, LPS group, LPS+miR-146a-3p mimic group, LPS+pcDNA3.1(pc)-TLR4 group, LPS+miR-146a-3p mimic+pc-TLR4 group. 100 nmol/L miR-146a-3p mimic and pc-TLR4 plasmids were transfected into MRC-5 cells separately or jointly for 24 hours, and then treated with 1000 ng/mL LPS or normal saline for 72 hours. The apoptosis rate was detected by flow cytometry. The expression levels of TLR4, cleaved caspase-3, Bax, and Bcl-2 proteins were detected by Western blot. The levels of IL-1β, IL-6 and TNF-α were detected by ELISA.ResultsCompared with the ALI group, the expression of miR-146a-3p was up-regulated, the expressions of TLR4 mRNA and protein were down-regulated, the apoptotic rate was decreased, the expressions of cleaved caspase-3 and Bax protein was down-regulated, the expression of Bcl-2 protein was up-regulated, and the levels of TNF-α, IL-6 and IL-1β in lung tissue were decreased in the lung tissues of the ALI+agomiR-146a-3p group (P<0.05). Dual-luciferase reporter assay confirmed that miR-146a-3p regulates transcription by targeting TLR4 3’UTR sequence (P<0.05). Compared with the LPS group, the expression of TLR4 protein in MRC-5 cells of the LPS+miR-146a-3p mimic group was down-regulated, the apoptosis was reduced, the expressions of cleaved caspase-3 and Bax protein were down-regulated, and the levels of TNF-α, IL-6 and IL-1β in lung tissue were decreased (P<0.05). Overexpression of TLR4 reversed the effect of miR-146a-3p mimic overexpression on LPS-induced apoptosis and inflammation of MRC-5 cells (P<0.05).ConclusionmiR-146a-3p alleviates LPS-induced ALI in mice by down-regulating TLR4.
ObjectiveTo evaluate the effect of positive end-expiratory pressure (PEEP) on respiratory function and hemodynamics in acute lung injury (ALI) with intra-abdominal hypertension (IAH). MethodsSix pigs were anesthetized and received mechanical ventilation (MV). Volume controlled ventilation was set with tidal volumn(VT) of 8 mL/kg,respiratory rate(RR) of 16 bpm,inspired oxygen concentration (FiO2) of 0.40,and PEEP of 5 cm H2O. ALI was induced by repeated lung lavage with diluted hydrochloric acid (pH<2.5) until PaO2/FiO2 declined to 150 mm Hg or less to established ALI model. Intra-abdominal hypertension was induced by an nitrogen inflator to reach intra-abdominal pressure of 20 mm Hg. Respiratory parameters and hemodynamics were continuously recorded at different PEEP levels(5,10,15,and 20 cm H2O). Every level was maintained for one hour. ResultsPaO2/FiO2 in PEEP5,10,15 and 20 were 90±11,102±10,172±23 and 200±34 mm Hg respectively. PaO2/FiO2 in PEEP15 and 20 were significantly higher than those in PEEP5 and 10 (P<0.05). Chest wall compliance (Ccw) in PEEP5,15 and 20 were 26±3,76±15 and 85±14 mL/cm H2O respectively. Ccw in PEEP15 and 20 were significantly higher than those in PEEP5 (P<0.05). There was no significant difference in lung compliance (CL) in different PEEP levels (P>0.05). Plateau pressure(Pplat) in PEEP5,10,15 and 20 were 30±3,31±2,36±2 and 38±4 cm H2O respectively. Pplat in PEEP15 and 20 were significantly higher than those in PEEP5 and 10 (P<0.05). There was no significant difference in Pplat between PEEP15 and 20 (P>0.05). Heart rate (HR) in PEEP5,15 and 20 were 113±17,147±30,and 160±30 beat/min respectively. HR in PEEP15 and 20 were significantly higher than those in PEEP5 (P<0.05). There was no significant difference in HR between PEEP15 and 20 (P>0.05).Cardiac index (CI) in PEEP5 and 20 were 4.5±0.6 and 3.5±0.6 L·min-1·m-2 respectively. CI in PEEP20 was significantly lower than that in PEEP5 (P<0.05). There was no significant difference in CI in PEEP5,10 or 15(P>0.05). Central venous pressure(CVP) in PEEP5,15 and 20 were 12±2,17±2,and 18±3 mm Hg respectively. CVP in PEEP15 and 20 were significantly higher than those in PEEP5 (P<0.05). There was no significant difference in CVP between PEEP15 and 20 (P>0.05). There were no significant differences in MAP,SVRI,ITBVI,GEDI,PVPI,or EVLWI between different PEEP levels. ConclusionConcomitant ALI and IAH can induce great impairments in respiratory physiology. When PEEP is gradually increased,oxygenation and the respiratory function are improved without significant secondary hemodynamic disturbances.
Objective To investigate the effect of aerosolized perfluorocarbon (PFC) (FC77) on gas exchange,histopathological changes of lung in acute lung injury and pulmonary expression of tumor necrosis factor-α (TNF-α) mRNA.Methods After acute lung injury (ALI) was induced by oleic acid (OA),16 rabbits were assigned randomly into 2 groups,ie.aerosolized perfluorocarbon group (PFC group) and conventional mechanical ventilation group (CMV group).Gas exchange parameters were measured before and after ALI,at 1,2,3,4 h after treatment.Histological sections taken from 6 different parts of lung were stained by hematoxylin and eosion.The express of TNF-α mRNA in the 2 different parts of lung were detected by in situ hybridization (ISH).Results Compared with CMV group,the PaO2 and static lung compliance (CLst) were significantly increased (Plt;0.05),the histopathological lesions of lung were attenuated,and the TNF-α mRNA expression was decreased significantly in PFC group (all Plt;0.05).There was more expression of TNF-α mRNA in backside than that in foreside of lung in two groups (Plt;0.05).Conclusion Aerosolized perfluorocarbon (PFC) can decrease expression of tumor necrosis factor-α mRNA in the lung,and improve the CLst and oxygenation during acute lung injury.
Objective To investigate the effects of different levels of intra-abdominal pressure ( IAP) on respiration and hemodynamics in a porcine model of acute lung injury( ALI) .Methods A total of 8 domestic swine received mechanical ventilation. Following baseline observations, oleic acid 0. 1mL/kg in 20mL of normal saline was infused via internal jugular vein. Using a nitrogen gas pneumoperitongum, the IAP increased from0 to 15 and 25mmHg, and the groups were named IAP0 , IAP15 and IAP25 , respectively. During the experimental period, hemodynamic parameters including heart rate ( HR) , cardiac output ( CO) , mean arterial pressure( MAP) , central venous pressure( CVP) , intrathoracic blood volume index( ITBVI) and so on were obtained by using thermodilution technique of pulse induced continuous cardiac output( PiCCO) . The esophageal pressure( Pes) was dynamicly monitored by the esophageal catheter. Results Pes and peak airway pressure( Ppeak) increased and static lung compliance( Cstat) decreased significantly in IAP15 and IAP25 groups compared with IAP0 group( all P lt;0. 01) . Transpulmonary pressure( Ptp) showed a downward trend( P gt;0. 05) . PO2 and oxygenation index showed a downward trend while PCO2 showed a upward trend ( P gt;0. 05) . HR and CVP increased significantly, cardiac index( CI) and ITBV index decreased significantly ( all P lt;0. 05) ,MAP didn′t change significantly( P gt;0. 05) . The changes in Pes were negatively correlated with the changes in CI( r = - 0. 648, P = 0. 01) . Conclusion In the porcine model of ALI, Pes increases because of a rise in IAP which decreased pulmonary compliance and CI.