Glioma is one of the most common primary tumors in the human brain with poor prognosis. The local and systemic immunosuppressive environment created by glioma cells enables them to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of the immunosuppression system. They are a heterogeneous cell population composed of early myeloid progenitor cells and precursor cells. Although the cells are diverse in phenotypes and functions, they all have strong immunosuppressive functions. MDSCs are extensively infiltrated into tumor tissues and play an important role in the glioma immunosuppressive microenvironment, which also hinders the immunotherapeutic effects of glioma. This article will review the phenotypic characteristics of MDSCs in the glioma microenvironment and their role in the progression of glioma. It is of positive significance to better understand the pathogenesis of glioma and explore effective comprehensive treatments.
Lung cancer has a high morbidity and mortality, and invasion is one of the major factors that cause recurrence and death in lung cancer patients. Tumor-associated macrophages (TAMs) are cells that have the potential to secrete cytokines, growth hormones, inflammatory substrates, and protein hydrolases, which are associated with the growth, invasion and metastasis of tumors. In this article, we will explore the various chemicals that are manufactured to promote the invasion of lung cancer, as well as the numerous clinical therapeutic features that TAMs possess in the treatment of lung cancer. In addition, we look at the possibility that TAMs might be beneficial in the treatment of lung cancer. We have an innovative investigation of the huge variety of complex substances generated by TAMs, with the goal of determining whether or not the molecules under investigation have the potential to serve as new therapeutic targets. Throughout the whole of the presentation, a significant focus is placed on doing in-depth research to ascertain whether TAMs have the capability to reinforce as viable carriers for unique and creative medications. This not only provides novel concepts for the creation of new targeted therapies but also leads to the development of brand-new, cutting-edge methods for the manufacture of individualized medicines and drug carriers.
Objective To summarize research status and mechanism about effects of carcinoma-associated fibroblasts (CAFs) on breast cancer stem cells. Method Relevant literatures about the relationship between the CAFs and breast cancer stem cells were collected and reviewed. Results CAFs were the majority type of the breast cancer stromal cells. The cancer stromal cell was also the important part of the tumor microenvironment, which could promote the proliferation, adhesion, invasion, and metastasis of the breast cancer. A subpopulation of cancer stem cells with the potentials of self-renewal and multi-directional differentiation in the breast cancer tissues might cause the tumor development. There was a phenotypic heterogeneity in the beast cancer stem cells, it was related to the tumor recurrence and therapy resistance. The CAFs could promote the formation of breast cancer stem cells through the epithelial mesenchymal transition and promote the transformation of tumor stem cell phenotype. More research needed to be done to prove these processes. Conclusion CAFs play an important role in formation of breast cancer stem cells and transformation of tumor stem cell phenotype, which might provide a new idea about treating breast cancer.
ObjectiveTo summarize the relationship between exosomes and the occurrence and development of gastrointestinal cancer.MethodsThrough online database, we collected the literatures about the relationship between exosomes and the development of gastrointestinal cancer at home and abroad, and then made an review.ResultsExosomes secreted by gastrointestinal cancer cells were related to tumorigenesis, tumor cell survival, chemoresistance, and early metastasis. Exosomes could play the role of information transmission, and regulation of cell physiology and pathological process in the development of gastrointestinal cancer through a variety of intercellular binding ways, and affectted the occurrence and development of gastrointestinal cancer via epigenetic regulation and tumor related signal transduction mechanism. They had been proved to be biomarkers, targets, and drug carriers for the treatment of gastrointestinalcancer.ConclusionIt is a new way to explore the molecular mechanism of exosomes in the development of gastrointestinal cancer.
Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.
ObjectiveTo review cancer associated fibroblasts(CAFs) and its role in the evolution of gastrointestinal neoplasms. MethodDomestic and international publications in relation to CAFs and its role in the evolution of gastrointestinal neoplasms were collected and reviewed. ResultsIn the gastrointestinal cancers, as the largest number and the most important stromal cells of the tumor microenvironment, CAFs induce the homeostasis of cell microenviron-ment out of balance, promote the remodeling of the tumor metabolism and extracellular matrix(ECM), and thus impulse the generation, proliferation, invasion and metastasis of the tumor by secreting different kinds of cytokines. ConclusionsThe key role CAFs playing in the tumor generation and evolution makes themselves and the multiple relatively specific molecules they secrete a new target for prognosis and targeted therapy, and this gives us a new idea for the combined treatment of gastrointestinal tumor or any other tumors.
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and is an important cause for cancer death. Although the application of immunotherapy in recent years has greatly improved the prognosis of NSCLC, there are still huge challenges in the treatment of NSCLC. The immune microenvironment plays an important role in the process of NSCLC development, infiltration and metastasis, and they can interact and influence each other, forming a vicious circle. Notably, single-cell RNA sequencing enables high-resolution analysis of individual cells and is of great value in revealing cell types, cell evolution trajectories, molecular mechanisms of cell differentiation, and intercellular regulation within the immune microenvironment. Single-cell RNA sequencing is expected to uncover more promising immunotherapies. This article reviews the important researches and latest achievements of single-cell RNA sequencing in the immune microenvironment of NSCLC, and aims to explore the significance of applying single-cell RNA sequencing to analyze the immune microenvironment of NSCLC.
Objective To introduce the research status of the immunomodulatory role of various immune cells and stromal cells in the tumor microenvironment in the progression of hepatocellular carcinoma. Method The related basic and clinical research literatures on the correlation between various immune cells and stromal cells in the tumor microenvironment and the occurrence, development and prognosis of hepatocellular carcinoma were reviewed and summarized. Results Immune cells and stromal cells in the tumor microenvironment have obvious complexity and diversity. Inhibitory immune cells in various immunosuppressive environments and stimulating immune cells that exert anti-tumor effects jointly promote or inhibit the occurrence and progression of hepatocellular carcinoma. Conclusions The exact role of various immune cells in the tumor microenvironment in hepatocellular carcinoma remains to be further studied. With the continuous accumulation of relevant research results, more patients with hepatocellular carcinoma will benefit from immunotherapy.
ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.
ObjectiveTo investigate the effect of ubiquitin specific peptidase 22 (USP22) on the occurrence and development of esophageal squamous cell carcinoma (ESCC) under hypoxic conditions, and its regulatory relationship with hypoxia inducible factor-1α (HIF-1α). MethodsWestern blotting and quantitative polymerase chain reaction (qPCR) were used to detect the differences in USP22 protein and mRNA expression between normal esophageal epithelial cells HEEC and ESCC cell lines KYSE30, KYSE150, EC9706, and TE-1 under normoxic (5% CO2, 20% O2, 75% N2) and hypoxic (5% CO2, 1% O2, 94% N2) conditions. By transfecting USP22 plasmid or siUSP22, ESCC cells were divided into a normoxia control group, a normoxia+USP22 group, a normoxia+siUSP22 group, a hypoxia control group, a hypoxia+USP22 group, and a hypoxia+siUSP22 group. The proliferation and migration abilities of cells in each group were detected. The expression of USP22 and HIF-1α under hypoxic conditions after up-regulating or down-regulating USP22 was detected, and their regulatory relationship was verified. The interaction between USP22 and HIF-1α was verified by co-immunoprecipitation (Co-IP) technique. ResultsCompared with HEEC cells, the expression of USP22 in ESCC cells was significantly increased (P<0.05). Up-regulation of USP22 expression promoted the proliferation and migration of ESCC cells, while silencing USP22 inhibited the proliferation and migration of ESCC cells (P<0.05). Under hypoxic conditions, the expression of USP22 and HIF-1α increased, and with the up-regulation of USP22 expression, the expression of HIF-1α also significantly increased (P<0.05). Co-IP experiment confirmed the binding between USP22 and HIF-1α. ConclusionUp-regulation of USP22 expression promotes the proliferation and migration of ESCC cells. Hypoxia microenvironment can induce the increase of USP22 expression in ESCC. USP22 may participate in the regulation of the occurrence and development of ESCC by directly binding to HIF-1α.