ObjectiveTo investigate the effects of hypoxic three-dimensional culture microenvironment on the proliferation of bone marrow mesenchymal stem cells and its mechanism. MethodsP5 generation mouse bone marrow mesenchymal stem cells and P (3HB-co-4HB) were co-cultured under normoxic three-dimensional (20%) and hypoxic three-dimensional microenvironment (4%) respectively. After 24 hours, the proliferation of the two groups was determined by CCK-8 method. The expression of HIF-1α gene was detected by real-time quantitative PCR after 12 hours. Western blotting was used to detect the expression of HIF-1α protein after 24 hours. ResultsAfter 24 hours, the CCK-8 method showed that the OD value of the hypoxia group was significantly higher than that of the normoxia group (0.455±0.027 vs. 0.352±0.090, n=12, P<0.05). After 12 hours of hypoxic culture, the expression level of HIF-1α mRNA in the hypoxia group was significantly higher than that in the normoxia group (P<0.05). Compared with the normoxia group (0.47± 0.05), the relative expression level of HIF-1α protein in the hypoxia group (0.63±0.06) significantly increased in the Western blotting after 24 hours (n=3, P<0.05). ConclusionThe hypoxic three-dimensional microenvironment can promote the proliferation of bone marrow mesenchymal stem cells, which may be related to the activation of HIF-1α signaling pathway.
ObjectiveTo investigate the effect of ubiquitin specific peptidase 22 (USP22) on the occurrence and development of esophageal squamous cell carcinoma (ESCC) under hypoxic conditions, and its regulatory relationship with hypoxia inducible factor-1α (HIF-1α). MethodsWestern blotting and quantitative polymerase chain reaction (qPCR) were used to detect the differences in USP22 protein and mRNA expression between normal esophageal epithelial cells HEEC and ESCC cell lines KYSE30, KYSE150, EC9706, and TE-1 under normoxic (5% CO2, 20% O2, 75% N2) and hypoxic (5% CO2, 1% O2, 94% N2) conditions. By transfecting USP22 plasmid or siUSP22, ESCC cells were divided into a normoxia control group, a normoxia+USP22 group, a normoxia+siUSP22 group, a hypoxia control group, a hypoxia+USP22 group, and a hypoxia+siUSP22 group. The proliferation and migration abilities of cells in each group were detected. The expression of USP22 and HIF-1α under hypoxic conditions after up-regulating or down-regulating USP22 was detected, and their regulatory relationship was verified. The interaction between USP22 and HIF-1α was verified by co-immunoprecipitation (Co-IP) technique. ResultsCompared with HEEC cells, the expression of USP22 in ESCC cells was significantly increased (P<0.05). Up-regulation of USP22 expression promoted the proliferation and migration of ESCC cells, while silencing USP22 inhibited the proliferation and migration of ESCC cells (P<0.05). Under hypoxic conditions, the expression of USP22 and HIF-1α increased, and with the up-regulation of USP22 expression, the expression of HIF-1α also significantly increased (P<0.05). Co-IP experiment confirmed the binding between USP22 and HIF-1α. ConclusionUp-regulation of USP22 expression promotes the proliferation and migration of ESCC cells. Hypoxia microenvironment can induce the increase of USP22 expression in ESCC. USP22 may participate in the regulation of the occurrence and development of ESCC by directly binding to HIF-1α.
ObjectiveTo review the research advances about myeloid derived suppressor cells(MDSC)and pancreatic cancer, and explore the future research trends. MethodRelated literatures in recent 5 years from abroad databases(PubMed, Web of Science, and EMBASE)and domestic databases(CNKI, WANFANG, and WEIPU)were collected and reviewed. ResultsThe MDSC was the core of tumor immune regulation network in pancreatic cancer microenvironment, it formed a complicated feedback with the pancreatic cancer and the stellate cells. MDSC could promote the cancerogensis and progression of pancreatic cancer, and the accumulation of MDSC in peripheral blood of pancreatic cancer patient could predict the poor prognosis. However up to now, the literatures about the relation between MDSC and the chemotherapy and metastasis of pancreatic cancer were limited. ConclusionsThe comprehensive therapy by targeting MDSC of pancreatic cancer is promising. However, many issues need to be further investigated.
Objective To summarize research status and mechanism about effects of carcinoma-associated fibroblasts (CAFs) on breast cancer stem cells. Method Relevant literatures about the relationship between the CAFs and breast cancer stem cells were collected and reviewed. Results CAFs were the majority type of the breast cancer stromal cells. The cancer stromal cell was also the important part of the tumor microenvironment, which could promote the proliferation, adhesion, invasion, and metastasis of the breast cancer. A subpopulation of cancer stem cells with the potentials of self-renewal and multi-directional differentiation in the breast cancer tissues might cause the tumor development. There was a phenotypic heterogeneity in the beast cancer stem cells, it was related to the tumor recurrence and therapy resistance. The CAFs could promote the formation of breast cancer stem cells through the epithelial mesenchymal transition and promote the transformation of tumor stem cell phenotype. More research needed to be done to prove these processes. Conclusion CAFs play an important role in formation of breast cancer stem cells and transformation of tumor stem cell phenotype, which might provide a new idea about treating breast cancer.
ObjectiveTo explore the changes of cytokines in the tumor microenvironment of colorectal cancer and the relationship between the expression of CD16a mRNA and cytokines in the microenvironment.MethodsRT-PCR and flow cytometry microsphere array (CBA) were used to detect the expressions of CD16a mRNA, as well as cytokines of Th1 [interleukin (IL)-2, IL-12, and interferone-γ (IFN-γ)], Th2 (IL-4, IL-6, and IL-10), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in the tumor and the adjacent tissues of 42 patients with colorectal cancer, respectively, and the correlation between the expression of CD16a mRNA and cytokines in the microenvironment was analyzed.ResultsThe expressions of IL-6, TNF-α, and VEGF in colorectal cancer tissues were significantly higher than those in the adjacent tissues (P<0.05). There was no significant difference in the expression of IL-2,IL-4, IL-10, IL-12, and IFN-γ between the two kinds of tissues (P>0.05). Clinicopathological factor analysis showed that, the levels of IL-6 and VEGF in the colorectal cancer patients with preoperative normal CEA were significantly higher than those with elevated CEA (P<0.05). Correlation analysis showed that the expression of IL-6 was negatively correlated with expression of CD16a mRNA (P<0.05).ConclusionsThe expressions of IL-6, TNF-α, and VEGF in tumor tissues were significantly higher than adjacent tissues, and the effect of angiogenic and immunosuppression were enhanced. The expression of CD16a mRNA in the microenvironment of colorectal cancer tumor is negatively correlated with the expression of IL-6.
This study aims to investigate the effect of substances secreted or metabolized by vascular endothelial cells on epithelial-mesenchymal transition (EMT) of hepatocellular carcinoma cells under indirect co-culture condition. Human hepatocellular carcinoma cell line QGY-7703 was cultured in vitro, and then was co-cultured with conditioned medium of human umbilical vein endothelial cells (HUVEC). The morphological changes of QGY-7703 cells were observed by inverted phase contrast microscopy. The migration ability of QGY-7703 cells was analyzed by scratch-wound assays. The effect of conditioned medium on the expression and distribution of EMT related proteins was detected by Western blot and immunofluorescence assays, respectively. The results showed that the QGY-7703 cells gradually changed from polygonal to spindle shape, the migration ability promoted significantly, and both the expression and distribution of EMT related marker changed in a time-dependent manner after co-culturing. The results confirm that vascular endothelial cells can induce EMT in hepatocellular carcinoma cells under indirect co-culture condition.
Objective To review the research progress of osteoblasts in the hematopoietic microenvironment of bone marrow and regulatory pathways and mechanisms. Methods The advances in the osteoblasts as crucial components for hematopoietic microenvironment in bone marrow, regulation to osteoblasts and hematopoietic stem cells(HSCs), and correlative singal pathways and mechanisms were introduced based on the recent related literature. Results Evidence indicates that osteoblasts are crucial components of the hematopoietic microenvironments in adult bone marrow. The osteoblasts maintainthe quiescence of primitive HSCs by the signaling receptorsligands, secreted cell factors and celladhesion molecules and by regulating other cells in the niche. The quiescent primitive HSCs persist stem cell characteristic which has unlimited selfrenewal and multipotent differentiation potential. Conclusion The further understanding of the relationship between osteoblasts and hematopoietic microenvironment should lead to development of new strategies directed toward clinical therapeutics of HSCs transplantation.
ObjectiveTo summarize the research results of metabolites of breast cancer based on metabonomics technology, and systematically reviews them in order to provide a new direction for the research of metabolism of breast cancer.MethodBy searching the relevant literatures in recent years, the application of metabonomics in identifying high-risk breast cancer population, monitoring the progress of tumor and evaluating the response of radiotherapy and chemotherapy were analyzed and summarized.ResultsWith the development of high-resolution, high-sensitivity and high-throughput bioanalysis platform technology, metabolomics had been widely used in breast cancer research field by virtue of its unique perspective and technical advantages to more accurately, systematically and dynamically monitor the changes of host metabolites.ConclusionMetabolomics technology provides a new research direction for primary prevention, early screening and diagnosis of breast cancer and optimal treatment strategy selection.
In the tumor microenvironment, tumor-associated macrophage, as polarized macrophages M2 phenotype, can promote tumor progression and affect the prognosis of cancer. Significant attention has been drawn towards tumor-associated macrophage in recent years. In this review, we describe the polarization state of macrophages determined by tumor microenvironment and the recruitment of tumor-associated macrophage. We also pay special attention to the interaction between tumor-associated macrophages and tumors, discuss and summarize various targeted therapy strategies for tumor-associated macrophages, aiming to provide a reference for the future development of these novel and effective anti-cancer treatments.
ObjectiveTo summarize the relationship between integrins, tumor metabolism, and tumor cells with pancreatic stellate cells in the tumor microenvironment, in order to provide targets and ideas for the treatment of pancreatic ductal adenocarcinoma.MethodTo review the literatures on pancreatic stellate cells, integrins, and amino acid metabolism as therapeutic targets for pancreatic ductal adenocarcinoma in the domestic and overseas.ResultsThe drug research for pancreatic ductal adenocarcinoma was currently under vigorous development, but remain in the animal and clinical test stage. As a new therapeutic protein, ProAgio could inhibit the expression of integrin αvβ3, activation and secretion of pancreatic stellate cells, and alanine metabolism in the microenvironment of pancreatic ductal adenocarcinoma, so as to achieve the dual effects of anti-fibrosis and anti-tumor.ConclusionsThe roles of activated pancreatic stellate cells, ProAgio, integrin αvβ3, and alanine metabolism in pancreatic ductal adenocarcinoma have been partially elucidated, but the specific mechanism still needs further investigation and may become a completely new therapeutic target someday.