west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "microsphere" 24 results
  • Application of Microspheres in Calcium Phosphate Cement System

    Calcium phosphate cement (CPC) has been widely used as bone fillers because of its excellent bioactivity and biocompatibility. Meanwhile, CPC is also an attractive candidate for the incorporation of drug or microspheres, because the preparing procedure avoids sintering and heating release. This paper summarizes the clinical applications of microspheres incorporated in CPC from the aspects of sustained drug release, accelerated degradation, porous structure and improved mechanical properties. The paper is aimed to analyze the methods and principles of microspheres loaded CPC, and so as to lay a foundation for the further research of improving and manufacturing the CPC with ideal properties.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Preparation and properties of silica/hydroxyapatite whiskers porous ceramics scaffold

    Objective To investigate the preparation and properties of the novel silica (SiO2)/hydroxyapatite (HAP) whiskers porous ceramics scaffold. Methods The HAP whiskers were modified by the SiO2 microspheres using the Stöber method. Three types of SiO2/HAP whiskers were fabricated under different factors (for the No.1 samples, the content of tetraethoxysilane, stirring time, calcination temperature, and soaking time were 10 mL, 12 hours, 560℃, and 0.5 hours, respectively; and in the No.2 samples, those were 15 mL, 24 hours, 650℃, and 2 hours, respectively; while those in the No.3 samples were 20 mL, 48 hours, 750℃, and 4 hours, respectively). The phase and morphology of the self-made HAP whisker and 3 types of SiO2/HAP whiskers were detected by the X-ray diffraction analysis and scanning electron microscopy. Taken the self-made HAP whisker and 3 types of SiO2/HAP whiskers as raw materials, various porous ceramic materials were prepared using the mechanical foaming method combined with extrusion molding method, and the low-temperature heat treatment. The pore structure of porous ceramics was observed by scanning electron microscopy. Its porosity and pore size distribution were measured. And further the axial compressive strength was measured, and the biodegradability was detected by simulated body fluid. Cell counting kit 8 method was used to conduct cytotoxicity experiments on the extract of porous ceramics. Results The SiO2 microspheres modified HAP whiskers and its porous ceramic materials were prepared successfully, respectively. In the SiO2/HAP whiskers, the amorphous SiO2 microspheres with a diameter of 200 nm, uniform distribution and good adhesion were attached to the surface of the whiskers, and the number of microspheres was controllable. The apparent porosity of the porous ceramic scaffold was about 78%, and its pore structure was composed of neatly arranged longitudinal through-holes and a large number of micro/nano through-holes. Compared with HAP whisker porous ceramic, the axial compressive strength of the SiO2/HAP whisker porous ceramics could reach 1.0 MPa, which increased the strength by nearly 4 times. Among them, the axial compressive strength of the No.2 SiO2/HAP whisker porous ceramic was the highest. The SiO2 microspheres attached to the surface of the whiskers could provide sites for the deposition of apatite. With the content of SiO2 microspheres increased, the deposition rate of apatite accelerated. The cytotoxicity level of the prepared porous ceramics ranged from 0 to 1, without cytotoxicity. Conclusion SiO2/HAP whisker porous ceramics have good biological activity, high porosity, three-dimensional complex pore structure, good axial compressive strength, and no cytotoxicity, which make it a promising scaffold material for bone tissue engineering.

    Release date:2023-09-07 04:22 Export PDF Favorites Scan
  • Arterial Ketone Body Ratio as Indicator in Liver Function

    Objective To estimate the relationship between arterial blood ketone body ratio (AKBR) and liver function and to appraise the feasibility of adding AKBR into liver function estimate. MethodsFrom 1994 to 1998, 44 patients with unresectable liver cancer recieved the combined radiochemoembolization with mixed emulsion of phosphorus32 glass microspheres (32PGMS), chemoagent and glycerine or lipiodol, via intraoperative hepatic artery instillation, hepatic artery ligation and operational arterial embolization (HAL+OAE) or transcatheter hepatic artery embolization (TAE). Preoperative and postoperative function and energy change level of the liver were tested by liver function test and AKBR. CT, SPECT, AFP were used to judge the therapy effect; multivariate statistical analysis methods were used to evaluate the correlation between AKBR and liver function. Spearmen rank correlation analysis was used to evaluate whether there was any relationship between AKBR and liver function test, and to evaluate that there was any relationship between AKBR and survival time. ResultsA negative correlation showed between the level of AKBR and liver function. The correlation coefficient of the three level of AKBR before operation and survival time was 0.4409. Conclusion AKBR can well reflect the degree of liver function.

    Release date:2016-08-28 05:10 Export PDF Favorites Scan
  • PROMOTION OF WOUND HEALING THROUGH INCORPORATION OF bFGF-IMPREGNATED MICROSPHERES INTO COLLAGEN MEMBRANE

    Objective To investigate the promotion effects of the collagen membrane incorporating bFGF impregnated microspheres on the wound healing of the pigskin losing its full-thickness layers. Methods The bFGF containing microspheres was added into the dry microspleres.The collagen membranes were prepared by incorporating bFGF-impregnated microspheres, and 6 York pig models of skin wounds with loss of their full-thickness layers were established for the ob servation of the effects on the wound healing. Results The healing time and the 28day healing rate were 27.30±1.14 days and 98.12%±1.97%, respectively.The healing rate was significantly higher and the healing time was significantl y shorter in the experimental group than in the control group (Plt;0.05). The histological examination showed that the proliferation condition of the epidermiswasalso much better in the experimental group. Conclusion Incorporation of bFGF-impregnated microspheres into the collagen membrane is a promising method of pro moting the healing of the wound with a loss of the fullthickness skin.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • COMPARISON OF CHARACTERISTICS BETWEEN GLUTARALDEHYDE- AND GENIPIN-CROSSLINKED GELATIN MICROSPHERES

    Objective To compare the characteristics of gelatin microspheres crossl inked by glutaraldehyde (GA) or geni pin (GP). Methods Gelatin microspheres, prepared by the improved emulsified cold-condensation method, were crossl inked by GP and GA, respectively. After being dispersed in PBS, two kinds of microspheres with 60% degree of cross l inking were compared in terms of morphology, swell ing and degrading properties. rhBMP-2 were loaded into the GP and GAmicrospheres, and the encapsulation rate, drug loading and releasing capacity were measured; 100%, 50% and 25% leaching l iquid of GP and GA microspheres were respectively cultured with rat osteoblast (DMEM group as the control), and cell prol iferation was measured by MTT method to grade the cell cytotoxicity. Results GP and GA microspheres were both spherical with the diameters of (78 ± 18) μm and (65 ± 10) μm, and there were no difference between both microspheres in drug loading and encapsulation rate. But, GP microspheres, with long degrading period (28 days) compared to GA microspheres (21 days), had better dispersibil ity, and swell ing rate (89.0% ± 4.8%), the percentage of cumulative drug releasing at 10 days (78.80% ± 4.96%) were both lower than GA microsphere (118.0% ± 7.6%, 90.50% ± 5.12%). The percentages of drug loading of GP and GA were (921 ± 73) and (965 ± 62) ng/g, and the encapsulation rates were 88.5% ± 2.1% and 89.7% ± 1.8%; showing no significant difference (P gt; 0.05). The cell cytotoxicity of 100%, 50% and 25% leaching l iquid of GP microspheres was all at the level I, but leaching l iquid of GA microspheres with corresponding concentration were at the levels of III, III and II. Conclusion GP crossl inked gelatin microspheres are superior to GA crossl inked gelatin microspheres and can be widely used in tissue engineering field.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • Injectable hydrogel microspheres experimental research for the treatment of osteoarthritis

    Objective To prepare a novel hyaluronic acid methacrylate (HAMA) hydrogel microspheres loaded polyhedral oligomeric silsesquioxane-diclofenac sodium (POSS-DS) patricles, then investigate its physicochemical characteristics and in vitro and in vivo biological properties. Methods Using sulfhydryl POSS (POSS-SH) as a nano-construction platform, polyethylene glycol and DS were chemically linked through the “click chemistry” method to construct functional nanoparticle POSS-DS. The composition was analyzed by nuclear magnetic resonance spectroscopy and the morphology was characterized by transmission electron microscopy. In order to achieve drug sustained release, POSS-DS was encapsulated in HAMA, and hybrid hydrogel microspheres were prepared by microfluidic technology, namely HAMA@POSS-DS. The morphology of the hybrid hydrogel microspheres was characterized by optical microscope and scanning electron microscope. The in vitro degradation and drug release efficiency were observed. Cell counting kit 8 (CCK-8) and live/dead staining were used to detect the effect on chondrocyte proliferation. Moreover, a chondrocyte inflammation model was constructed and cultured with HAMA@POSS-DS. The relevant inflammatory indicators, including collagen type Ⅱ, aggrecan (AGG), matrix metalloproteinase 13 (MMP-13), recombinant A disintegrin and metalloproteinase with thrombospondin 5 (Adamts5), and recombinant tachykinin precursor 1 (TAC1) were detected by immunofluorescence staining and real-time fluorescence quantitative PCR, with normal cultured chondrocytes and the chondrocyte inflammation model without treatment as control group and blank group respectively to further evaluate their anti-inflammatory activity. Finally, by constructing a rat model of knee osteoarthritis, the effectiveness of HAMA@POSS-DS on osteoarthritis was evaluated by X-ray film and Micro-CT examination. Results The overall particle size of POSS-DS nanoparticles was uniform with a diameter of about 100 nm. HAMA@POSS-DS hydrogel microspheres were opaque spheres with a diameter of about 100 μm and a spherical porous structure. The degradation period was 9 weeks, during which the loaded POSS-DS nanoparticles were slowly released. CCK-8 and live/dead staining showed no obvious cytotoxicity at HAMA@POSS-DS, and POSS-DS released by HAMA@POSS-DS significantly promoted cell proliferation (P<0.05). In the chondrocyte anti-inflammatory experiment, the relative expression of collagen type Ⅱ mRNA in HAMA@POSS-DS group was significantly higher than that in control group and blank group (P<0.05). The relative expression level of AGG mRNA was significantly higher than that of blank group (P<0.05). The relative expressions of MMP-13, Adamts5, and TAC1 mRNA in HAMA@POSS-DS group were significantly lower than those in blank group (P<0.05). In vivo experiments showed that the joint space width decreased after operation in rats with osteoarthritis, but HAMA@POSS-DS delayed the process of joint space narrowing and significantly improved the periarticular osteophytosis (P<0.05). Conclusion HAMA@POSS-DS can effectively regulate the local inflammatory microenvironment and significantly promote chondrocyte proliferation, which is conducive to promoting cartilage regeneration and repair in osteoarthritis.

    Release date:2023-08-09 01:37 Export PDF Favorites Scan
  • HEPATIC ARTERIAL CHEMOEMBOLIZATION OF ADRIAMYCIN-ETHYLCELLULOSE MICROSPHERES IN THE TREATMENT OF LIVER CANCER IN RATS

    Objective To investigate the growth of tumors and the natural life length of the rats after the adriamycinethylcellulose microspheres(ADM-EC mc) were injected in the rats bearing transplantable liver cancer through their hepatic arteries.Methods ADM-EC mc were infused into the proper hepatic arteries of the Wistar rats (W256). All of the rats were divided randomly into five groups, group 1: control, group 2: normal saline, group 3: conventional ADM, group 4: placebo ethylcellulose microspheres, and group 5: ADM-EC mc. Results As compared with other four groups, the ADM-EC mc (group 5) showed the best inhibition of the growth of tumors and the longest mean life length of the rats. Conclusion Hepatic arterial infusion of ADM-EC mc can inhibit the growth of the tumor, aggravate the necrosis, and improve the effects of the chemotherapy of liver cancer.

    Release date:2016-08-28 05:30 Export PDF Favorites Scan
  • Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects

    Objective To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. Methods The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β1 (TGF-β1) osteochondral composite scaffolds were constructed respectively by " 3 layers sandwich method”. The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasingin vitro, scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Results Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold (P<0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new cartilage, and new cartilage well integrated with the adjacent cartilage in group D. The results of histological staining revealed that defects were filled with a small amount of fibrous tissue in groups A and B, and a small amount of new cartilage in groups C and D at 3 months after repair; new cartilage of groups C and D was similar to normal cartilage, but defects were filled with a large amount of fibrous tissue in groups A and B at 6 months after repair. The expression of collagen type II in groups C and D was significantly higher than that in groups A and B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Conclusion Loading naringin composite scaffolds have good biocompatibility and effect in repair of rabbit articular osteochondral defects.

    Release date:2017-04-12 11:26 Export PDF Favorites Scan
  • RESTORING PHENOTYPE OF DEDIFFERENTIATED NORMAL NUCLEUS PULPOSUS CELLS BY RESVERATROL

    Objective To investigate the effects of in-vitro monolayer culture and three-dimensional (3-D) alginate microsphere culture on the differentiation of normal human nucleus pulposus cells (NPCs), and to discuss the regulatory mechanism of restoring the phenotype of dedifferentiated NPCs by culturing resveratrol (RES) in 3-D alginate microsphere. Methods Normal human nucleus pulposus tissues were harvested for culture and identification of NPCs from 6 patients with burst lumbar vertebra fracture. NPCs at passages 1, 3, 5, and 7 in the in-vitro monolayer culture were harvested to observe the morphology, cell aging, and proteoglycan expression. The cell proliferation rates of NPCs at passage 1 in-vitro in monolayer culture and in 3-D alginate microsphere culture were detected. NPCs at passage 7 were randomly divided into 3-D alginate microsphere control group (group A), RES group (group B), silent mating type information regulation 2 homolog 1 (SIRT1)- small interfering RNA (siRNA) + RES group (group C), and negative control-siRNA + RES group (group D); and NPCs in the in-vitro monolayer culture was monolayer control group (group E). After corresponding treatment, Western blot was used for determining the protein expressions of SIRT1, Aggrecan, and collagen type II; real-time fluorescence quantitative PCR was used for detecting SIRT1 mRNA expression. Results The cultured cells were identified to be NPCs. Morphological observation, senescence-associated β-galactosidase (SA-β-gal) staining, and toluidine blue staining showed that dedifferentiation of normal NPCs tended to occur under continuous in-vitro monolayer culture, which was more obvious with increase of passage number. NPCs in 3-D alginate microsphere culture showed significantly lower proliferation rate than NPCs in the in-vitro monolayer culture (P lt; 0.05), but it could significantly improve the protein expressions of collagen type II and Aggrecan in dedifferentiated NPCs, showing significantly difference between groups E and A (P lt; 0.05). The protein expressions of SIRT1, collagen type II, and Aggrecan in group B were significantly improved when compared with that in group A (P lt; 0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expressions of SIRT1 mRNA and proteins in group C were significantly inhibited after transfected with SIRT1-siRNA when compared with those in groups B and D (P lt; 0.05), and the protein expressions of collagen type II and Aggrecan in group C were significantly lower than those in groups B and D (P lt; 0.05). Conclusion Continuous in-vitro monolayer culture could efficiently cultivate numerous seeding NPCs, but it is liable to dedifferentiate. In 3-D alginate microsphere culture, RES could restore the phenotype of dedifferentiated NPCs and synthesize more extracellular matrix, which is related to the regulation of SIRT1.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • The fabrication and related properties study of chitosan-poly (lactide-co-glycolide) double-walled microspheres loaded with nerve growth factor

    ObjectiveTo evaluate the feasibility of the chitosan-poly (lactide-co-glycolide) (PLGA) double-walled microspheres for sustained release of bioactive nerve growth factor (NGF) in vitro.MethodsNGF loaded chitosan-PLGA double-walled microspheres were prepared by emulsion-ionic method with sodium tripolyphosphate (TPP) as an ionic cross-linker. The double-walled microspheres were cross-linked by different concentrations of TPP [1%, 3%, 10% (W/V)]. NGF loaded PLGA microspheres were also prepared. The outer and inner structures of double-walled microspheres were observed by light microscopy, scanning electron microscopy, confocal laser scanning microscopy, respectively. The size and distribution of microspheres and fourier transform infra red spectroscopy (FT-IR) were analyzed. PLGA microspheres with NGF or chitosan-PLGA double-walled microspheres cross-linked by 1%, 3%, and 10%TPP concentration (set as groups A, B, C, and D respectively) were used to determine the degradation ratio of microspheres in vitro and the sustained release ratio of NGF in microspheres at different time points. The bioactivity of NGF (expressed as the percentage of PC12 cells with positive axonal elongation reaction) in the sustained release solution of chitosan-PLGA double-walled microspheres without NGF (set as group A1) was compared in groups B, C, and D.ResultsThe chitosan-PLGA double-walled microspheres showed relative rough and spherical surfaces without aggregation. Confocal laser scanning microscopy showed PLGA microspheres were evenly uniformly distributed in the chitosan-PLGA double-walled microspheres. The particle size of microspheres ranged from 18.5 to 42.7 μm. The results of FT-IR analysis showed ionic interaction between amino groups and phosphoric groups of chitosan in double-walled microspheres and TPP. In vitro degradation ratio analysis showed that the degradation ratio of double-walled microspheres in groups B, C, and D appeared faster in contrast to that in group A. In addition, the degradation ratio of double-walled microsphere in groups B, C, and D decreased when the TPP concentration increased. There were significant differences in the degradation ratio of each group (P<0.05). In vitro sustained release ratio of NGF showed that when compared with PLGA microspheres in group A, double-walled microspheres in groups B, C, and D released NGF at a relatively slow rate, and the sustained release ratio decreased with the increase of TPP concentration. Except for 84 days, there was significant difference in the sustained release ratio of NGF between groups B, C, and D (P<0.05). The bioactivity of NGF results showed that the percentage of PC12 cells with positive axonal elongation reaction in groups B, C, and D was significantly higher than that in group A1 (P<0.05). At 7 and 28 days of culture, there was no significant difference between groups B, C, and D (P>0.05); at 56 and 84 days of culture, the percentage of PC12 cells with positive axonal elongation reaction in groups C and D was significantly higher than that in group B (P<0.05), and there was no significant difference between groups C and D (P>0.05).ConclusionNGF loaded chitosan-PLGA double-walled microspheres have a potential clinical application in peripheral nerve regeneration after injury.

    Release date:2020-02-18 09:10 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content