Microaneurysm is the initial symptom of diabetic retinopathy. Eliminating this lesion can effectively prevent diabetic retinopathy in the early stage. However, due to the complex retinal structure and the different brightness and contrast of fundus image because of different factors such as patients, environment and acquisition equipment, the existing detection algorithms are difficult to achieve the accurate detection and location of the lesion. Therefore, an improved detection algorithm of you only look once (YOLO) v4 with Squeeze-and-Excitation networks (SENet) embedded was proposed. Firstly, an improved and fast fuzzy c-means clustering algorithm was used to optimize the anchor parameters of the target samples to improve the matching degree between the anchors and the feature graphs; Then, the SENet attention module was embedded in the backbone network to enhance the key information of the image and suppress the background information of the image, so as to improve the confidence of microaneurysms; In addition, an spatial pyramid pooling was added to the network neck to enhance the acceptance domain of the output characteristics of the backbone network, so as to help separate important context information; Finally, the model was verified on the Kaggle diabetic retinopathy dataset and compared with other methods. The experimental results showed that compared with other YOLOv4 network models with various structures, the improved YOLOv4 network model could significantly improve the automatic detection results such as F-score which increased by 12.68%; Compared with other network models and methods, the automatic detection accuracy of the improved YOLOv4 network model with SENet embedded was obviously better, and accurate positioning could be realized. Therefore, the proposed YOLOv4 algorithm with SENet embedded has better performance, and can accurately and effectively detect and locate microaneurysms in fundus images.
Network meta-analysis may be performed by fitting multivariate meta-analysis models with Stata software mvmeta command; however, there are various challenges such as preprocessing the data, parameterising the model, and making good graphical displays of results. A suite of Stata programs, network, may meet these challenges. In this article, we introduce how to use the network commands to implement network meta-analysis by the example of continuous data.
The application of subdermal vascular network skin flap (SVN flap) with axial-pattern of artery for skin and soft tissues defects on the extremities of 39 cases was reported. The tyes of flaps included:SVN direct cutaneous artery skin flap in 23 eases, SVN island skin flap in 13 eases, and vaseularized SVN skin flap in 3 cases, All flaps were survived except in one ease of vaseularized SVN skin flap failed. The patients were followed for 6 months to 1 year after operation, the grafted areas showed good looking, no hypertrophy of scar tissue, and normal texture. This type of flap had the advantages of axial-pattern skin flap and that of the SVN skin flap as well, and could be widely applied in the clinical fields.
Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.
Epileptic seizures and the interictal epileptiform discharges both have similar waveforms. And a method to effectively extract features that can be used to distinguish seizures is of crucial importance both in theory and clinical practice. We constructed state transfer networks by using visibility graphlet at multiple sampling intervals and analyzed network features. We found that the characteristics waveforms in ictal periods were more robust with various sampling intervals, and those feature network structures did not change easily in the range of the smaller sampling intervals. Inversely, the feature network structures of interictal epileptiform discharges were stable in range of relatively larger sampling intervals. Furthermore, the feature nodes in networks during ictal periods showed long-term correlation along the process, and played an important role in regulating system behavior. For stereo-electroencephalography at around 500 Hz, the greatest difference between ictal and the interictal epileptiform occurred at the sampling interval around 0.032 s. In conclusion, this study effectively reveals the correlation between the features of pathological changes in brain system and the multiple sampling intervals, which holds potential application value in clinical diagnosis for identifying, classifying, and predicting epilepsy.
OBJECTIVE To evaluate the clinical efficacy of thin flap with subdermal vascular network of the neck-pectoral region on repair of the contracture of the burn scar on the neck. METHODS From March 1990 to May 1998, 21 cases of deformity of neck due to burn scar were repaired with the thin flap ranging from 8 cm x 5 cm to 14 cm x 8 cm, and all of the cases were followed up for 6 to 42 months. RESULTS Except partial necrosis of the distal end of the flap in 1 case, the flaps in the other 20 cases all survived and presented a satisfactory appearance and function. CONCLUSION The thin flap with subdermal vascular network in neck-pectoral region may provide a large area of flap, and could be easily transferred. It’s an ideal flap for the repair of skin defect on the neck.
Using modular identification methods in gene-drug multiplex networks to infer new gene-drug associations can identify new therapeutic target genes for known drugs. In this paper, based on the gene expression data and drug response data of lung cancer in the genomics of drug sensitivity in cancer (GDSC) database, a multiple network algorithm is proposed. First, a heterogeneous network of genes of lung cancer and drugs in different cell lines is constructed, and then a network module identification method based on graph entropy is used. In this heterogeneous network, network modules are identified, and five lung cancer gene-drug association modules are identified through iterative convergence. Compared with other methods, the algorithm has better results in terms of running time, accuracy and robustness, and the identified modules have obvious biological significance. The research results in this article have guiding significance for the medication and treatment of lung cancer, and can provide references for the treatment of other diseases with the same targeted genes.
Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.
From Sept 1989 to Dec 1993, the auricular composite graft carrying a piece of postauriclar skin with subdermal vascular network was used to repair 7 cases having defects of nasal alar or tip and 1 having microtia. The width of the composite grafts ranged from 1.8cm to 2.6cm, and the size of the postauricular skin rangedfrom 0.08×1cm2 to 2.2×2.5cm2. All cases gained successful results. The mechanism of survival of the composite grafts, and the essential points in operation were detailed.
Atherosclerosis is a complex disease characterized by lipid accumulation in the vascular wall and influenced by multiple genetic and environmental factors. To understand the mechanisms of molecular regulation related to atherosclerosis better, a protein interaction network was constructed in the present study. Genes were collected in nucleotide database and interactions were downloaded from Biomolecular Object Network Database (BOND). The interactional data were imported into the software Cytoscape to construct the interaction network, and then the degree characteristics of the network were analyzed for Hub proteins. Statistical significance pathways and diseases were figured out by inputting Hub proteins to KOBAS2.0. The complete pathway network related to atherosclerosis was constructed. The results identified a series of key genes related to atherosclerosis, which would be the potential promising drug targets for effective prevention.