west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "neural network" 109 results
  • Convolutional neural network human gesture recognition algorithm based on phase portrait of surface electromyography energy kernel

    Surface electromyography (sEMG) is a weak signal which is non-stationary and non-periodic. The sEMG classification methods based on time domain and frequency domain features have low recognition rate and poor stability. Based on the modeling and analysis of sEMG energy kernel, this paper proposes a new method to recognize human gestures utilizing convolutional neural network (CNN) and phase portrait of sEMG energy kernel. Firstly, the matrix counting method is used to process the sEMG energy kernel phase portrait into a grayscale image. Secondly, the grayscale image is preprocessed by moving average method. Finally, CNN is used to recognize sEMG of gestures. Experiments on gesture sEMG signal data set show that the effectiveness of the recognition framework and the recognition method of CNN combined with the energy kernel phase portrait have obvious advantages in recognition accuracy and computational efficiency over the area extraction methods. The algorithm in this paper provides a new feasible method for sEMG signal modeling analysis and real-time identification.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
  • Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network

    Feature extraction methods and classifier selection are two critical steps in heart sound classification. To capture the pathological features of heart sound signals, this paper introduces a feature extraction method that combines mel-frequency cepstral coefficients (MFCC) and power spectral density (PSD). Unlike conventional classifiers, the adaptive neuro-fuzzy inference system (ANFIS) was chosen as the classifier for this study. In terms of experimental design, we compared different PSDs across various time intervals and frequency ranges, selecting the characteristics with the most effective classification outcomes. We compared four statistical properties, including mean PSD, standard deviation PSD, variance PSD, and median PSD. Through experimental comparisons, we found that combining the features of median PSD and MFCC with heart sound systolic period of 100–300 Hz yielded the best results. The accuracy, precision, sensitivity, specificity, and F1 score were determined to be 96.50%, 99.27%, 93.35%, 99.60%, and 96.35%, respectively. These results demonstrate the algorithm’s significant potential for aiding in the diagnosis of congenital heart disease.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Establishment and test of intelligent classification method of thoracolumbar fractures based on machine vision

    Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.

    Release date:2021-11-25 03:04 Export PDF Favorites Scan
  • Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network

    The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Mental fatigue state recognition method based on convolution neural network and long short-term memory

    The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • A hybrid attention temporal sequential network for sleep stage classification

    Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition

    With inherent sparse spike-based coding and asynchronous event-driven computation, spiking neural network (SNN) is naturally suitable for processing event stream data of event cameras. In order to improve the feature extraction and classification performance of bio-inspired hierarchical SNNs, in this paper an event camera object recognition system based on biological synaptic plasticity is proposed. In our system input event streams were firstly segmented adaptively using spiking neuron potential to improve computational efficiency of the system. Multi-layer feature learning and classification are implemented by our bio-inspired hierarchical SNN with synaptic plasticity. After Gabor filter-based event-driven convolution layer which extracted primary visual features of event streams, we used a feature learning layer with unsupervised spiking timing dependent plasticity (STDP) rule to help the network extract frequent salient features, and a feature learning layer with reward-modulated STDP rule to help the network learn diagnostic features. The classification accuracies of the network proposed in this paper on the four benchmark event stream datasets were better than the existing bio-inspired hierarchical SNNs. Moreover, our method showed good classification ability for short event stream input data, and was robust to input event stream noise. The results show that our method can improve the feature extraction and classification performance of this kind of SNNs for event camera object recognition.

    Release date: Export PDF Favorites Scan
  • A review on brain age prediction in brain ageing

    The human brain deteriorates as we age, and the rate and the trajectories of these changes significantly vary among brain regions and among individuals. Because neuroimaging data are potentially important indicators of individual's brain health, they are commonly used in brain age prediction. In this review, we summarize brain age prediction model from neuroimaging-based studies in the last ten years. The studies are categorized based on their image modalities and feature types. The results indicate that the prediction frameworks based on neuroimaging holds promise toward individualized brain age prediction. Finally, we addressed the challenges in brain age prediction and suggested some future research directions.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
  • Research progress on colorectal cancer identification based on convolutional neural network

    Colorectal cancer (CRC) is a common malignant tumor that seriously threatens human health. CRC presents a formidable challenge in terms of accurate identification due to its indistinct boundaries. With the widespread adoption of convolutional neural networks (CNNs) in image processing, leveraging CNNs for automatic classification and segmentation holds immense potential for enhancing the efficiency of colorectal cancer recognition and reducing treatment costs. This paper explores the imperative necessity for applying CNNs in clinical diagnosis of CRC. It provides an elaborate overview on research advancements pertaining to CNNs and their improved models in CRC classification and segmentation. Furthermore, this work summarizes the ideas and common methods for optimizing network performance and discusses the challenges faced by CNNs as well as future development trends in their application towards CRC classification and segmentation, thereby promoting their utilization within clinical diagnosis.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Application of deep neural network models to the electrocardiogram

    Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.

    Release date: Export PDF Favorites Scan
11 pages Previous 1 2 3 ... 11 Next

Format

Content