Objective To research the protective effects of different allogeneic cells injected into denervated muscles on ventricornual motor neuron. Methods Thirty-six adult female SD rats, weighting 120-150 g, were individed into four groups randomly and each group had nine. Left ischiadic nerves of all the SD rats, which were cut down on germfree conditions,were operated by primary suture of epineurium. Different cells were injected into the triceps muscles of calf in each group after operation with once a week for 4 weeks:1 ml Schwann cells (1×106/ml) in group A, 1 ml mixed cells ofSchwann cells and myoblast cells (1∶1,1×106/ml) in group B, 1 ml extract from the mixed cells of Schwann cells, myoblast cells and endotheliocytes (1∶1∶1,1×106/ml)in group C,and 1 ml culture medium without FCS as control group(group D). The observation of enzymohistochemistry and C-Jun expression in the ventricornual motor neuron was made after three months of operation. Results After 3 months of operation, the expressions of C-Jun in groups A, B and C were superiorto that in group D; the number of neuron was more than that of group D. The expressions of C-Jun in the ventricornual motor neuron were as follows: 128.591±0.766 in group A, 116.729±0.778 in group B, 100.071±2.017 in group C and 144.648±2.083 in group D; showing statistically significant difference between groupsA, B, C and D(P<0.01). Enzymohistochemistry showed the well outlined and wellstacked cell body of neuron in groups A, B and C, and illdefined boundary of cytoplasm and nucleus. There was statistically significant defference in enzyme activity of the ventricornual motor neuron between groups(P<0.01). Conclusion All of the Schwann cells,mixed cells of Schwann cells with myoblast cells,and the extract from Schwann cells, myoblast cells and endotheliocytes can protect the ventricornual motor neuron. And the protectiveeffect of the extract from Schwann cells, myoblast cells and endotheliocytes is superior to that of Schwann cells and mixed cells.
OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.
OBJECTIVE: To explore the mechanism of tissue specificity of neurotropism in peripheral nerve regeneration, we investigated the biological characteristics of the nerve regeneration conditioned fluids(NRCF) on motoneuron of SD rats cultured in vitro. METHODS: Silicon chambers were sutured respectively to the distal stumps of motorial branch of femoral nerve and saphenous nerve to collect NRCF, namely MD-NRCF and SD-NRCF. The rats cortex motoneuron were divided into 4 groups and cocultured with MD-NRCF, SD-NRCF, b-FGF and serum-free medium respectively. The cultured cells were photoed under phase-contrast microscope, their longest neurites and cell-body areas were measured by cell image processing computer system. MTT automated colorimetric microassay was also adopted to quantify the activation of cultured motoneurons in each group. RESULTS: Cells of MD-NRCF group had longer neurites than those of the other three groups, and their activation was also superior to those of the other groups. CONCLUSION: The results suggest that MD-NRCF has more significantly neurite-promoting and neurobiological effects on motoneuron than SD-NRCF and b-FGF.
Objective To investigate the effect of olfactory ensheathing cell culture medium (OECCM) on the growth of spinal cord neurons and its protective effect on the injured neurons by H2O2, and to disscuss the probable protective mechanisms of olfactory ensheathing cells (OECs). Methods The primary olfactory ensheathing cells (OECs) were isolated from olfactory bulb of adult SD rat, and OECCM were prepared. The morphology of OECs was observed by inverted phase contrast microscope, identified by rabbit-antiratlow-affinity nerve growth factor p75 (NGFRp75), and its purity were calculated.Primary spinal cord neurons were cultured from 15 to 17 days pregnant SD rats, and injury model of neurons were prepared by H2O2. OECCM and control culture medium were added into the normal spinal neurons (groups A, B). OECCM and control culture medium were added into the injured spinal neurons by H2O2 (groups C, D). In groups A and C, 200 μL of control culture medium was used; in groups B and D, 100 μL of control culture medium and 100 μL of OECCM were used. Then the growth index such as average diameter of neuron body, the number and length of neuron axons were measured. The viabil ities of normal and injured neurons were assessed by MTT. Results OECs showed bipolar or tripolar after 6-9 days of culture. Primary spinal cord neurons were round and bigger, and neuron axons grew significantly and showed bipolar after 5-7 days of culture. The immunocytochemisty of OECs by NGFRp75 showed that membrane were stained. The degree of purity was more than 90%. Primary spinal cord neurons grew well after 6-9 days of culture, and compared with group A, neurons of group B grew b, whose cell density and diameter were bigger. The average diameter of neuron body, the number and length of neuron axons were (33.38 ± 6.80) D/μm, (1.67 ± 0.80), and (91.19 ± 62.64) L/μm in group A, and (37.39 ± 7.28) D/μm, (1.76 ± 0.82), and (121.33 ± 81.13) L/μm in group B; showing statistically significant differences (P lt; 0.05). The absorbency (A) value of neurons was 0.402 0 ± 0.586 9 in group A and 0.466 0 ± 0.479 0 in group B; showing statistically significant difference (P lt; 0.01). After 2 hours of injury by H2O2, the cell density of spinal cord neurons decreased, and neuron axons shortened. The A value of injured neurons was 0.149 0 ± 0.030 0 in group C and 0.184 0 ± 0.052 0 in group D, showing statistically significant difference (P lt; 0.01). Conclusion The results above suggest that OECCM could improve the growth of spinal cord neurons and protectthe injured neurons. The neurotrophic factors that OECs secrete play an important role in the treatment of spinal cord injury.
Objective To study the method to inhibit perioperative internal mammary artery (IMA) spasm from the perspective of muscarinic receptor, and research the function of muscarinic cholinergic receptor subtypes of IMA. Methods IMA segments in vitro with intact endothelium were obtained from 30 patients who underwent coronary artery bypass grafting (CABG). According to muscarinic receptor antagonists of different concentrations, They were divided into control group (not using receptor antagonist), atropine group (nonselective M receptor antagonist), pirenzepine group (M1 receptor antagonist) and Methoctramine group(M2 receptor antagonist) by random number table. The effects of antagonists on vasodilatation were analyzed, Scott ratio was used to calculate affinity index (pD2) and Schild plot was used to count rivalry index (pA2). Results Acetylcholine (Ach)induced concentrationdependentrelaxation response of IMA segments with intact endothelium precontracted with potassium chloride (KCl). The pD2 was 6.92±0.05. The effects of atropine, pirenzepine and methoctramine on doseresponse curve induced by Ach with intact endothelium were all concentrationdependent. With the increase of the concentration of antagonists, the Achinduced doseresponse curves had a significant shift to right(Plt;0.05). Atropine, pirenzepine and Methoctramine competitively antagonized the reaction of vessel to Ach. The pA2 were 9.62±0.15,7.70±0.08 and 630±0.08, respectively. Conclusion The Achinduced relaxation response of IMA with intact endothelium is concentrationdependent. According to the affinity of different antagonist, IMA in Vitro Achinduced relaxation response is implemented by acting on nonneuronal muscarinic cholinergic M1 receptor subtype.
Objective To investigate the survival effect and reaction mechanismsof motor neurons after reimplantation of the avulsed root into the spinal cord,and to observe the survival and differentiation in the spinal cord after brachial plexus roots avulsion. Methods Thirty adult Wistar rats were randomly devided into the control group and the experimental group (n=15). Laminectomy of C4-6 was performed via a posterior approach. The ventral and dorsal roots of C5,6 were both avulsed from the spinal cord outside the dura mater and within the vertebral canal.For the experimental group, the ventral root of C6 wasreimplanted into the ventralhorn under microscope. The dorsal root was left. The ventral and dorsal roots of C5 were placed inside the nearby muscles. For the control group, the ventral and dorsal roots of both C5 and C6 were placed inside the nearby muscles. At 2, 4, 6, 8, 12 weeks postoperatively, the C6 spinal cord was stained with HE. The changes of the number and morphology of motor neurons were observed onHEstained sections. The C6 spinal nerve root was stained with silver nitrate, andthe regeneration of nerve fiber was observed. Results All rats were recovered well and their wounds were healed at primary stage. The gross observation showed that the avulsed nerve roots in control group adhered to adjacent muscles, however the one in experimental groups which had been implanted into spinal cord adhered to scar tissues and were not separated from spinal cord. At each time point postoperatively, the HEstained transverse sections showed that the number of motor neurons decreased significantly with soma swollen and atrophied, Nissle bodies decreased or disappeared. The survival rates of motor neurons in the control group were 60.9%±5.8%,42.3%±3.5%,30.6%±6.1%27.5%±7.9% and 20.4%±6.8% respectively;in the experimental group,the survival rates were 67.1%±7.4%,56.3%±4.6%,48.7%±8.8%,44.2%±5.5% and 42.5%±8.3% respectively. The survival rates of motor neurons in the experimental group was higher than those in the control group at all time points,showing statistically significant difference(Plt;0.01).At 12 weeks postoperatively, thesilver nitrate stained specimen from the C6 nerve root showed regeneration of the motor neurons in the ventral horn into the reimplanted nerve root through axon in the experimental group,but the degeneration of the nerve fiber appeared and the number of the myelinated nerve fiber decreased in the control group. Conclusion Through reimplantationof the avulsed ventral nerve root into the ventral horn, degeneration of the motor neurons in the ventral horn can be reduced. After reimplantation of avulsed nerve root, there is axonal regrowth of motor neurons into the spinal nerve root and regeneration of the myelinated nerve fiber also appears.
Finite element analysis can be used to study the change of the structure and the interior field intensity of human and animal body organs and tissues with simulation experiment. We in our research used finite element analysis software to analyze and solve the spinal cord surface potential problems, and investigated the transmission features of signals generated by interneurons in spinal nerves which were related with body motion control and sensory processing. A three dimensional model of electrical source in rat spinal cord was built, and the influence on potential distribution on spinal cord surface caused by position changes of electrical source in transverse direction and dorsoventral direction were analyzed and calculated. We obtained the potential distribution curves of spinal cord surface and found that the potential distribution on spinal cord surface showed monotone. In addition, potentials of some registration points were smaller than that of registration points around.
Objective Targeted adenoviral gene delivery from peripheral nerves was used to integrally analyse the characterization and time course of LacZ gene (AdLacZ) retrograde transfer to spinal cord and transgene product anterograde labeling ofperipheral nerve. Methods Recombinant replication-defective adenovirus containing AdLacZ was administrated to the cut proximal stumps of median and tibial nerves in Wister rats. Then the transected nerve was repaired with 10-0 nylon sutures. At different time point postinfection the spinal cords of C5 to T1 attached with DRGs and brachial plexuses, or L2 to L6 attached with DRGs and lumbosacralplexuses were removed. The removed spinal cord and DRGs were cut into 50 μm serialcoronal sections and processed for X-gal staining and immunohistochemical staining. The whole specimens of brachial or lumbosacral plexuses attaching with theirperipheral nerves were processed for X-gal staining. The number of X-gal stained neurons was counted and the initial detected time of retrograde labeling, peaktime and persisting period of gene expression in DRG sensory neurons, spinal cord motor neurons and peripheral nerves were studied. Results The gene transfer was specifically targeted to the particular segments of spinal cord andDRGs, and transgene expression was strictly unilaterally corresponding to the infected nerves. Within the same nerve models, the initial detected time of gene expression was earliest in DRG neurons, then in the motor neurons and latest in peripheral nerves. The persisting duration of β-gal staining was shortest in motor neurons, then in sensory neurons and longest in peripheral nerves. The initial detected time of β-gal staining in median nerve models was earlier in mediannerve models compared with that in the tibial nerve models. Although the initial detected time and the beginning of peak duration of β-gal staining were not same, the decreasing time of β-gal staining in motor and sensory neurons of thetwo nerve models were started at about the same day 8 post-infection. The labeled neurons were more in tibial nerve-models than that in median nerve models. Within the same models, the labeled sensory neurons of DRGs were morethan labeled motor neurons of ventral horn. The β-gal staining was tenser in median nerves than that in tibial nerves. However the persisting time of β-gal staining was longer in tibial nerve models. Conclusion The b gene expression in neurons and PNS renders this system particularly attractive for neuroanatomical tracing studies. Furthermore this gene delivery method allowing specific targeting of motor and sensory neurons without damaging the spinal cord might offer potentialities for the gene therapy of peripheral nerve injury.
Objective To review research progress of the relation between glial cell line-derived neurotropic factor (GDNF) and motoneuron development and motoneuron disease. Methods The recent articles on GDNF and motonerons were extensively reviewed. The molecular structure, the mode of action and the route of administration of GDNF were investigated. Results GDNF plays extensive roles in the development anddisease of motoneuron. GDNF might regulate the development of the motonerons of the spinal cord to some extent and also save the injured motoneurons. Conclusion GDNF has a potential clinical value and inestimable futurein the treatment of motoneuron diseases.
OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.