west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "pan-cancer analysis" 1 results
  • The prognostic value and immune regulatory role of BRF1 in pan-cancer, and its function in esophageal squamous cell carcinoma

    ObjectiveTo investigate the pan-cancer expression profile, prognostic value, co-expression networks, immune regulatory roles of BRF1, and its biological functions and molecular mechanisms in esophageal squamous cell carcinoma (ESCC). MethodsIntegrated analysis of TCGA pan-cancer datasets was performed to evaluate BRF1 expression differences between tumor/normal tissues, survival correlations, co-expressed gene-enriched pathways, and immune features (immune checkpoints, cytokines, immune cell infiltration). GEO datasets were used to validate BRF1 expression in ESCC. BRF1 was knocked down using siRNA in ESCC cells, with MTT and Transwell assays assessing proliferation/migration, and Western blot analyzing proliferation- (PCNA) and migration-related proteins (Vimentin, MMP, E-Cadherin). TCGA data were analyzed to explore BRF1-ferroptosis correlations. ResultsBRF1 was significantly upregulated in over 20 cancer types. High BRF1 expression predicted poor prognosis in adrenocortical carcinoma (ACC) and prostate adenocarcinoma (PRAD). BRF1 positively regulated T cell-mediated cell death pathways in ESCA and circadian rhythm pathways in PAAD. BRF1 exhibited cancer-type-specific correlations with immune checkpoints, cytokine networks, and immune cell infiltration. In vitro, BRF1 knockdown suppressed ESCC proliferation (PCNA downregulation) and migration (Vimentin/MMP downregulation, E-Cadherin upregulation). BRF1 expression positively correlated with ferroptosis antagonists (GPX4, HSPA5, SLC7A11). ConclusionBRF1 demonstrates complex pan-cancer expression and functional heterogeneity, modulating tumor progression and immune infiltration. BRF1 promotes ESCC proliferation and migration, potentially via ferroptosis resistance regulation, highlighting its potential as a therapeutic target in ESCC.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content