west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "peripheral nerve" 19 results
  • Analysis of clinical features, treatment methods, and prognostic influence factors in patients with malignant peripheral nerve sheath tumor

    Objective To investigate the clinical features, treatment methods, and prognostic influence factors of patients with malignant peripheral nerve sheath tumor (MPNST). MethodsA retrospective analysis was conducted on 96 MPNST patients treated between January 1, 2015 and December 31, 2021. There were 46 males and 50 females, aged between 15 and 87 years (mean, 48.2 years). The tumors were located in the trunk in 50 cases, extremities in 39 cases, and head and neck in 7 cases. The maximum tumor diameter was <5 cm in 49 cases, ≥5 cm in 32 cases, with 15 cases missing data. Tumor depth was deep in 77 cases and superficial in 19 cases. The Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) histological grading was G1 in 9 cases, G2 in 12 cases, and G3 in 34 cases, with 41 cases missing data. There were 37 recurrent MPNST cases, 32 cases with neurofibromatosis type 1 (NF1), and 26 cases in stage Ⅳ. Postoperative adjuvant radiotherapy was administered to 25 patients, perioperative chemotherapy to 45 patients, and anlotinib-targeted therapy to 30 patients. R0 resection was achieved in 73 cases. Patients were divided into groups based on the presence or absence of NF1, and baseline data between the two groups were compared. Kaplan-Meier curves were generated to assess disease-free survival (DFS) and overall survival (OS) based on various factors (age, gender, presence of NF1, recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R0 resection, tumor location, tumor size, tumor depth, perioperative chemotherapy, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy), and differences between survival curves were analyzed using the Log-Rank test. Multivariate COX proportional hazards regression was used to identify independent prognostic factors for MPNST. Results Patients with NF1 had a significantly higher proportion of superficial tumors and lower FNCLCC grade compared to those without NF1 (P<0.05); no significant difference was found for other variables (P<0.05). Kaplan-Meier analysis showed that recurrent MPNST, stage Ⅳ MPNST, FNCLCC grade, R0 resection, perioperative chemotherapy, and anlotinib-targeted therapy were factors influencing 1-year DFS (P<0.05), while stage Ⅳ MPNST, FNCLCC grade, and perioperative chemotherapy were factors affecting 3-year OS (P<0.05). Multivariate COX proportional hazards regression analysis revealed that recurrent MPNST and high-grade FNCLCC (G3) were independent prognostic factors for 1-year DFS (P<0.05), while stage Ⅳ MPNST, superficial tumor depth, age over 60 years, postoperative adjuvant radiotherapy, and anlotinib-targeted therapy were independent prognostic factors for 3-year OS (P<0.05). Conclusion MPNST patients with NF1 tend to have more superficial tumors and lower FNCLCC grades. FNCLCC grade, R0 resection, and adjuvant therapies, including radiotherapy and anlotinib-targeted therapy, are closely associated with MPNST prognosis. Complete surgical resection should be prioritized in clinical management, along with adjuvant treatments such as radiotherapy and targeted therapy of anlotinib to improve patient outcomes.

    Release date:2024-11-13 03:16 Export PDF Favorites Scan
  • Research progress of graphene and its derivatives in repair of peripheral nerve defect

    Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.

    Release date:2018-10-31 09:22 Export PDF Favorites Scan
  • Preparation and properties of fiber-based conductive composite scaffolds for peripheral nerve regeneration

    ObjectiveTo explore the preparation method, physical and chemical properties, and biocompatibility of a conductive composite scaffold based on polypyrrole/silk fibroin (PPy/SF) fiber with " shell-core” structure, and to provide a preliminary research basis for the application in the field of tissue engineered neuroscience.Methods The conductive fibers with " shell-core” structure were prepared by three-dimensional printing combined with in-situ polymerization. PPy/SF fiber-based conductive composite scaffolds were formed by electrospinning. In addition, core-free PPy conductive fibers and SF electrospinning fibers were prepared. The stability, biomechanics, electrical conductivity, degradation performance, and biological activity of each material were tested to analyze the comprehensive properties of fiber-based conductive composite scaffolds.ResultsCompared with pure core-free PPy conductive fibers and SF electrospinning fibers, the PPy/SF fiber-based conductive composite scaffolds with " shell-core” structure could better maintain the stability performance, enhance the mechanical stretchability of the composite scaffolds, maintain long-term electrical activity, and improve the anti-degradation performance. At the same time, PPy/SF conductive composite scaffolds were suitable for NIH3T3 cells attachment, conducive to cell proliferation, and had good biological activity.ConclusionPPy/SF fiber-based conductive composite scaffolds meet the needs of conductivity, stability, and biological activity of artificial nerve grafts, and provide a new idea for the development of a new generation of high-performance and multi-functional composite materials.

    Release date:2019-03-11 10:22 Export PDF Favorites Scan
  • NEUROTROPHIC SUBSTANCE SECRETED BY CULTURED SCHWANN S CELL: ITS EXTRACTION AND BIOLOGICAL ACTIVITY IN VITRO

    Schwanns cell (SC) was isolated from sciatic nerve of adult rat with Wallerine degeneration. After culture, SC-serum free culture media (SCSFCM) was obtained. By ultrafiltration with PM-10 Amicon Membrane, electrophoresis with DiscPAGE,and electrical wash-out with Biotrap apparatus, D-band protein was isolated from the SC-SFCM. The D-band protein in the concentration of 25ng/ml could affect the survival of the spinal anterior horn neuron in vitro, prominently and itsactivity was not changed after being frozen. The molecular weight of the protein ranged from 43 to 67 Kd. The D-band protein might be a neurotrophic substancedifferent from the known SCderived neurotrophic factors (NTF). Its concentration with biological activity was high enough to be detected. The advantages of MTT in assessment of NTF activity were also discussed.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • Application of multimodal intraoperative neurophysiological monitoring technology in neurofibromatosis type 1 related peripheral nerve tumor surgery

    Objective To summarize application effect and clinical experience of multimodal intraoperative neurophysiological monitoring (IONM) technology in the surgery of neurofibromatosis type 1 (NF1) related peripheral nerve tumors. Methods A retrospective study was conducted on NF1 patients, who admitted between January 2019 and December 2023 and treated with peripheral nerve tumor resection surgery assisted by multimodal IONM technology. There were 49 males and 45 females. The age ranged from 5 to 78 years, with an average of 33.7 years. Tumor morphological classification included 71 cases of nodular type, 13 cases of diffuse type, and 10 cases of mixed type. Target tumors were distributed in craniofacial region (47 cases), neck (11 cases), trunk (12 cases), and limbs (24 cases). Preoperatively, 44 cases had no obvious neurological symptoms, while the remaining patients had neurological symptoms, including 15 cases of visual impairment, 5 cases of hearing impairment, 16 cases of somatic movement disorders, and 31 cases of somatic sensory disorders, of which 7 cases had more than one symptom. IONM plans were selected based on the relevant nerves and adjacent important structures of the target tumor, including visual evoked potential (17 cases), somatosensory evoked potential (44 cases), motor evoked potential (88 cases), and electromyogram (94 cases).Results All surgeries were successfully completed. Ninety-three patients underwent total/near total resection and 1 patient underwent palliative resection. Pathological examination showed 80 cases of neurofibroma and 14 cases of malignant peripheral nerve sheath tumors. Complications included 2 cases of hematoma and 3 cases of incision infection. All patients were followed up 3-61 months (median, 15 months). During follow-up, no significant changes in neurological symptoms or tumor recurrence were found. Among the patients with preoperative visual impairment, there were 14 cases with no improvement in symptoms and 1 with improvement after surgery. Among the patients with somatic movement disorders, there were 11 cases with no improvement in symptoms, 3 cases with improvement, 2 cases with aggravation, 4 newly onset cases, and 1 case with significant impact on daily life after surgery. Among the patients with somatic sensory disorders, there were 17 cases with no improvement in symptoms, 14 cases with improvement, and 13 newly onset cases. The patients with hearing impairment showed improvement after surgery. Conclusion The clinical manifestations of NF1 related peripheral nerve tumors are complex. Multimodal IONM technology can provide real-time detection of nerve provocation and damage. Surgical treatment with multimodal IONM technology is safe and can reduce complications.

    Release date:2024-11-13 03:16 Export PDF Favorites Scan
  • Research progress of adipose-derived stem cells in promoting the repair of peripheral nerve injury

    ObjectiveTo summarize the research progress of adipose-derived stem cells (ADSCs) in promoting the repair of peripheral nerve injury.MethodsThe related literature at home and abroad in recent years was widely reviewed, the mechanism of ADSCs promoting the repair of peripheral nerve injury was introduced, and its basic research progress was analyzed and summarized. Finally, the clinical transformation application of ADSCs in the treatment of peripheral nerve injury was introduced, the existing problems were pointed out, and the new treatment regimen was prospected.ResultsADSCs have the function of differentiation and paracrine, and their secreted neurotrophic factors, antiapoptosis, and antioxidant factors can promote the repair of peripheral nerve injury.ConclusionADSCs are rich in content and easy to obtain, which has a definite effectiveness on the repair of peripheral nerve injury with potential clinical prospect.

    Release date:2020-08-19 03:53 Export PDF Favorites Scan
  • Effect of short-term low-frequency electrical stimulation on nerve regeneration of delayed nerve defect during operation

    Objective To explore the effect of short-term low-frequency electrical stimulation (SLES) during operation on nerve regeneration in delayed peripheral nerve injury with long gap. Methods Thirty female adult Sprague Dawley rats, weighing 160-180 g, were used to prepare 13-mm defect model by trimming the nerve stumps. Then all rats were randomly divided into 2 groups, 15 rats in each group. After nerve defect was bridged by the contralateral normal sciatic nerve, SLES was applied in the experimental group, but was not in the control group. The spinal cords and dorsal root ganglions (DRGs) were harvested to carry out immunofluorescence histochemistry double staining for growth-associated proteins 43 (GAP-43) and brain-derived neurotrophic factor (BDNF) at 1, 2, and 7 days after repair. Fluorogold (FG) retrograde tracing was performed at 3 months after repair. The mid-portion regenerated segments were harvested to perform Meyer’s trichrome staining, immunofluorescence double staining for neurofilament (NF) and soluble protein 100 (S-100) on the transversely or longitudinal sections at 3 months after repair. The segment of the distal sciatic nerve trunk was harvested for electron microscopy and morphometric analyses to measure the diameter of the myelinated axons, thickness of myelin sheaths, the G ratio, and the density of the myelinated nerve fibers. The gastrocnemius muscles of the operated sides were harvested to measure the relative wet weight ratios. Karnovsky-Root cholinesterase staining of the motor endplate was carried out. Results In the experimental group, the expressions of GAP-43 and BDNF were higher than those in the control group at 1 and 2 days after repair. The number of labeled neurons in the anterior horn of gray matter in the spinal cord and DRGs at the operated side from the experimental group was more than that from the control group. Meyer’s trichrome staining, immunofluorescence double staining, and the electron microscopy observation showed that the regenerated nerves were observed to develop better in the experimental group than the control group. The relative wet weight ratio of experimental group was significantly higher than that of the control group (t=4.633,P=0.000). The size and the shape of the motor endplates in the experimental group were better than those in the control group. Conclusion SLES can promote the regeneration ability of the short-term (1 month) delayed nerve injury with long gap to a certain extent.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Progress in neurosurgical treatment of neurofibromatosis type 1

    Objective To summarize the latest developments in neurosurgical treatments for neurofibromatosis type 1 (NF1) and explore therapeutic strategies to provide comprehensive treatment guidelines for clinicians. Methods The recent domestic and international literature and clinical cases in the field of NF1 were reviewed. The main types of neurological complications associated with NF1 and their treatments were thorough summarized and the future research directions in neurosurgery was analyzed. Results NF1 frequently results in complex and diverse lesions in the central and peripheral nervous systems, particularly low-grade gliomas in the brain and spinal canal and paraspinal neurofibromas. Treatment decisions should be made by a multidisciplinary team. Symptomatic plexiform neurofibromas and tumors with malignant imaging evidence require neurosurgical intervention. The goals of surgery include reducing tumor size, alleviating pain, and improving appearance. Postoperative functional rehabilitation exercises, long-term multidisciplinary follow-up, and psychosocial interventions are crucial for improving the quality of life for patients. Advanced imaging guidance systems and artificial intelligence technologies can help increase tumor resection rates and reduce recurrence. Conclusion Neurosurgical intervention is the primary treatment for symptomatic plexiform neurofibromas and malignant peripheral nerve sheath tumors when medical treatment is ineffective and the lesions progress rapidly. Preoperative multidisciplinary assessment, intraoperative electrophysiological monitoring, and advanced surgical assistance devices significantly enhance surgical efficacy and safety. Future research should continue to explore new surgical techniques and improve postoperative management strategies to achieve more precise and personalized treatment for NF1 patients.

    Release date:2024-11-13 03:16 Export PDF Favorites Scan
  • Preliminary study on preparation of decellularized nerve grafts from GGTA1 gene-edited pigs and their immune rejection in xenotransplantation

    Objective To prepare decellularized nerve grafts from alpha-1, 3-galactosyltransferase (GGTA1) gene-edited pigs and explore their biocompatibility for xenotransplantation. Methods The sciatic nerves from wild-type pigs and GGTA1 gene-edited pigs were obtained and underwent decellularization. The alpha-galactosidase (α-gal) content in the sciatic nerves of GGTA1 gene-edited pigs was detected by using IB4 fluorescence staining and ELISA method to verify the knockout status of the GGTA1 gene, and using human sciatic nerve as a control. HE staining and scanning electron microscopy observation were used to observe the structure of the nerve samples. Immunofluorescence staining and DNA content determination were used to evaluate the degree of decellularization of the nerve samples. Fourteen nude mice were taken, and subcutaneous capsules were prepared on both sides of the spine. Decellularized nerve samples of wild-type pigs (n=7) and GGTA1 gene-edited pigs (n=7) were randomly implanted in the subcutaneous capsules. Blood was drawn at 1, 3, 5, and 7 days after implantation to detect neutrophil counting. Results IB4 fluorescence staining and ELISA detection showed that GGTA1 gene was successfully knocked out in the nerves of GGTA1 gene-edited pigs. HE staining showed that the structure of the decellularized nerve from GGTA1 gene-edited pigs was well preserved; the nerve basement membrane tube structure was visible under scanning electron microscopy; no cell nuclei was observed, and the extracellular matrix components was retained in the nerve grafts by immunofluorescence staining; and the DNA content was significantly reduced when compared with the normal nerves (P<0.05). In vivo experiments showed that the number of neutrophils in the two groups were similar at 1, 3, and 7 days after implantation, with no significant difference (P>0.05); only at 5 days, the number of neutrophils was significantly lower in the GGTA1 gene-edited pigs than in the wild-type pigs (P<0.05). Conclusion The decellularized nerve grafts from GGTA1 gene-edited pigs have well-preserved nerve structure, complete decellularization, retain the natural nerve basement membrane tube structure and components, and low immune response after xenotransplantation through in vitro experiments.

    Release date:2025-02-17 08:55 Export PDF Favorites Scan
  • A STUDY ON BIOMECHANICAL PROPERTIES OF CHEMICALLY EXTRACTED ACELLULAR PERIPHERAL NERVE

    Objective To investigate the differences in biomechanical properties between fresh and chemically extracted acellular peri pheral nerve. Methods Thirty-six sciatic nerves were harvested from 18 adult male Wistar rats of 3 months old and randomly assigned into 3 groups (n=12 per group): normal control group (group A), the nerve segments received no treatment; Sondell method group (group B), the nerve segments were chemically extracted with the detergents of Triton X-100 and sodium deoxycholate; and improved method group (group C), chemically extracted acellular treatment of nerve was done with the detergents of Triton X-200, Sulfobetaine-10 (SB-10), and SB-16. After the acellularization, the structural changes of nerves in each group were observed by HE staining and field emission scanning electron microscope,then the biomechanical properties of nerves were tested using mechanical apparatus (Endura TEC ELF 3200). Results HE staining and field emission scanning electron microscope showed that the effect of acellularization of group C was similar to that of group B, but the effects of demyel ination and integrity of nerve fiber tube of group C were better than those of group B; the structure of broken nerves was more chaotic than before biomechanical test. The biomechanical test showed that the ultimate load, ultimate stress, ultimate strain, mechanical work to fracture in group A were the largest, the next was group C, the least was group B; the tenacity and elastic modulus in group C were the largest, the next was group B, the least was group A; but the differences were not significant (P gt; 0.05). Conclusion Compared with Sondell method, the nerve treated by improved method is more appropriate for use in vivo.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content