Objective To develop and validate a prediction model to assess the risk of depression in patients with chronic kidney disease (CKD) based on National Health and Nutrition Examination Survey (NHANES) database. Methods Data on patients with CKD were selected from the NHANES between 2005 and 2018. Participants were randomly divided into a training set and a validation set in a 7∶3 ratio for model development and validation, respectively. Multivariable logistic regression was used in the training set to identify independent risk factors associated with depression in CKD patients, with stepwise selection applied to determine the final predictors. Model performance was assessed using receiver operating characteristic curve (ROC), calibration plots, and decision curve analysis (DCA). Internal validation was performed through bootstrap resampling, and a predictive model was ultimately established. Results A total of 4413 CKD patients were included, including 2112 males (47.86%) and 2301 females (52.14%). Among them, 3089 patients were assigned to the training set and 1324 to the validation set. In the training set, 332 patients (10.75%) presented with depressive symptoms, while 143 patients (10.80%) in the validation set had depressive symptoms. Multivariate logistic regression analysis showed that other hispanic, current smoking, and sleep disorders were risk factors (P<0.05). Male, middle or high-income, high school grad/ged or above, married or widowed were protective factors (P<0.05). Finally, 7 variables were included to construct a prediction model, including gender, poverty income ratio, education level, marital status, smoking status, body mass index, and sleep disorders. The ROC curve showed that the AUC=0.773 [95% confidence interval (0.747, 0.799)] in the training set, the internal validation was evaluated by 1000 Bootstrap resampling methods, and the corrected C-index=0.763. The validation set AUC=0.778 [95% confidence interval (0.740, 0.815)], showed good discrimination ability. The calibration curve showed that the model’s predicted probability was highly consistent with the actual occurrence. Decision curve analysis showed that the model provided a significant net benefit for clinical decision-making at a threshold probability of 20%~50%. Conclusions The prediction model constructed in this study can effectively predict the risk of depression in patients with CKD and can provide guidance for early screening and personalized intervention for high-risk groups. However, the external validation and localization of the model still needed further research.
Risk prediction models for postoperative pulmonary complications (PPCs) can assist healthcare professionals in assessing the likelihood of PPCs occurring after surgery, thereby supporting rapid decision-making. This study evaluated the merits, limitations, and challenges of these models, focusing on model types, construction methods, performance, and clinical applications. The findings indicate that current risk prediction models for PPCs following lung cancer surgery demonstrate a certain level of predictive effectiveness. However, there are notable deficiencies in study design, clinical implementation, and reporting transparency. Future research should prioritize large-scale, prospective, multi-center studies that utilize multiomics approaches to ensure robust data for accurate predictions, ultimately facilitating clinical translation, adoption, and promotion.
Acute kidney injury (AKI) is a complication with high morbidity and mortality after cardiac surgery. In order to predict the incidence of AKI after cardiac surgery, many risk prediction models have been established worldwide. We made a detailed introduction to the composing features, clinical application and predictive capability of 14 commonly used models. Among the 14 risk prediction models, age, congestive heart failure, hypertension, left ventricular ejection fraction, diabetes, cardiac valve surgery, coronary artery bypass grafting (CABG) combined with cardiac valve surgery, emergency surgery, preoperative creatinine, preoperative estimated glomerular filtration rate (eGFR), preoperative New York Heart Association (NYHA) score>Ⅱ, previous cardiac surgery, cadiopulmonary bypass (CPB) time and low cardiac output syndrome (LCOS) are included in many risks prediction models (>3 times). In comparison to Mehta and SRI models, Cleveland risk prediction model shows the best discrimination for the prediction of renal replacement therapy (RRT)-AKI and AKI in the European. However, in Chinese population, the predictive ability of the above three risk prediction models for RRT-AKI and AKI is poor.
ObjectiveTo conduct a comprehensive analysis of risk prediction models for acute kidney injury (AKI) following Stanford type A aortic dissection surgery through a systematic review. MethodsA systematic search was performed in English and Chinese databases such as PubMed, EMbase, ProQuest, Web of Science, China National Knowledge Infrastructure (CNKI), VIP, Wanfang, and SinoMed to collect relevant literature published up to January 2025. Two researchers completed the literature screening and data extraction. The methodological quality of the prediction models was assessed using bias risk assessment tools, and a meta-analysis was performed using R version 4.3.1, with a focus on evaluating the predictive factors of the models. Results A total of 15 studies were included (13 retrospective cohort studies, 1 prospective cohort study, and 1 case-control study), involving 22 risk prediction models and a cumulative sample size of 4 498 patients. The overall applicability of the included studies was good, but all 15 studies exhibited a high risk of bias. The meta-analysis revealed that the area under the curve (AUC) for the predictive performance of the models was 0.834 [95%CI (0.798, 0.869)]. Further subgroup analysis indicated that the number of predictive factors was a source of heterogeneity. Additionally, hypertension [OR=2.35, 95%CI (1.55, 3.54)], serum creatinine [OR=1.01, 95%CI (1.00, 1.01)], age [OR=1.05, 95%CI (1.02, 1.09)], and white blood cell count [OR=1.14, 95%CI (1.06, 1.22)] were identified as predictors of AKI following type A aortic dissection surgery. Conclusion Currently, the predictive models for AKI after type A aortic dissection surgery demonstrate good performance. However, all included models carry a high risk of bias. It is recommended to strengthen multicenter prospective studies and external validation of the models to enhance their clinical applicability.
ObjectiveProlonged mechanical ventilation (PMV) is a prognostic marker for short-term adverse outcomes in patients after lung transplantation.The risk of prolonged mechanical ventilation after lung transplantation is still not clear. The study to identify the risk factors of prolonged mechanical ventilation (PMV) after lung transplantation.Methods This retrospective observational study recruited patients who underwent lung transplantation in Wuxi People’s Hospital from January 2020 to December 2022. Relevant information was collected from patients and donors, including recipient data (gender, age, BMI, blood type, comorbidities), donor data (age, BMI, time of endotracheal intubation, oxygenation index, history of smoking, and any comorbidity with multidrug-resistant bacterial infections), and surgical data (surgical mode, incision type, operation time, cold ischemia time of the donor lung, intraoperative bleeding, and ECMO support), and postoperative data (multi-resistant bacterial lung infection, multi-resistant bacterial bloodstream infection, and mean arterial pressure on postoperative admission to the monitoring unit). Patients with a duration of mechanical ventilation ≤72 hours were allocated to the non-prolonged mechanical ventilation group, and patients with a duration of mechanical ventilation>72 hours were allocated to the prolonged mechanical ventilation group. LASSO regression analysis was applied to screen risk factors., and a clinical prediction model for the risk of prolonged mechanical ventilation after lung.ResultsPatients who met the inclusion criteria were divided into the training set and the validation set. There were 307 cases in the training set group and 138 cases in the validation set group. The basic characteristics of the training set and the validation set were compared. There were statistically significant differences in the recipient’s BMI, donor’s gender, CRKP of the donor lung swab, whether the recipient had pulmonary infection before the operation, the type of transplantation, the cold ischemia time of the donor lung, whether ECMO was used during the operation, the duration of ECMO assistance, CRKP of sputum, and the CRE index of the recipient's anal test (P<0.05). 2. The results of the multivariate logistic regression model showed that female recipients, preoperative mechanical ventilation in recipients, preoperative pulmonary infection in recipients, intraoperative application of ECMO, and the detection of multi-drug resistant Acinetobacter baumannii, multi-drug resistant Klebsiella pneumoniae and maltoclomonas aeruginosa in postoperative sputum were independent risk factors for prolonged mechanical ventilation after lung transplantation. The AUC of the clinical prediction model in the training set and the validation set was 0.838 and 0.828 respectively, suggesting that the prediction model has good discrimination. In the decision curves of the training set and the validation set, the threshold probabilities of the curves in the range of 0.05-0.98 and 0.02-0.85 were higher than the two extreme lines, indicating that the model has certain clinical validity.ConclusionsFemale patients, Preoperative pulmonary infection, preoperative mechanical ventilation,blood type B, blood type O, application of ECMO assistance, multi-resistant Acinetobacter baumannii infection, multi-resistant Klebsiella pneumoniae infection, and multi-resistant Stenotrophomonas maltophilia infection are independent risk factors for PMV (prolonged mechanical ventilation) after lung transplantation.