west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "predictive model" 23 results
  • Predictive value of simple predictive model for prognosis of patients with acute ST-segment elevation myocardial infarction

    ObjectiveTo explore the predictive value of a simple prediction model for patients with acute myocardial infarction.MethodsClinical data of 280 patients with acute ST-segment elevation myocardial infarction (STEMI) in the Department of Emergence Medicine, West China Hospital of Sichuan University from January 2019 to January 2020 were retrospectively analyzed. The patients were divided into a death group (n=34) and a survival group (n=246).ResultsAge, heart rate, body mass index (BMI), global registry of acute coronary events (GRACE), thrombolysis in myocardial infarction trial (TIMI) score, blood urea nitrogen, serum cystatin C and D-dimer in the survival group were less or lower than those in the death group (P<0.05). Left ventricle ejection fraction and the level of albumin, triglyceride, total cholesterol and low density lipoprotein cholesterol were higher and the incidence of Killip class≥Ⅲ was lower in the survival group compared to the death group (P<0.05). Multivariate logistic regression analysis showed that age, BMI, heart rate, diastolic blood pressure, and systolic blood pressure were independent risk factors for all-cause death in STEMI patients. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve of simple prediction model for predicting death was 0.802, and similar to that of GRACE (0.816). The H-L test showed that the simple model had high accuracy in predicting death (χ2=3.77, P=0.877). Pearson correlation analysis showed that the simple prediction model was significantly correlated with the GRACE (r=0.651, P<0.001) and coronary artery stenosis score (r=0.210, P=0.001).ConclusionThe simple prediction model may be used to predict the hospitalization and long-term outcomes of STEMI patients, which is helpful to stratify high risk patients and to guide treatment.

    Release date:2021-11-25 03:54 Export PDF Favorites Scan
  • Research progress on predictive models for inadvertent perioperative hypothermia in adult

    Inadvertent perioperative hypothermia (IPH) is one of the common complications of surgery, which can lead to a series of adverse consequences. In recent years, with the deepening development of precision medicine concepts, establishing predictive models to identify the risk of IPH early and implementing targeted interventions has become an important research direction for perioperative management. This article reviews the current research status of IPH predictive models in adults, focusing on the research design, modeling methods, selection of prediction factors, and prediction performance of different predictive models. It also explores the advantages and limitations of existing models, aiming to provide references for the selection, application, and optimization of relevant predictive models.

    Release date:2025-08-26 09:30 Export PDF Favorites Scan
  • A predictive model for the risk of lymph node metastasis in colorectal cancer

    ObjectiveTo explore the risk factors of lymph node metastasis in patients with colorectal cancer, and construct a risk prediction model to provide reference for clinical diagnosis and treatment.MethodsThe clinicopathological data of 416 patients with colorectal cancer who underwent radical resection of colorectal cancer in the Department of Gastrointestinal Surgery of the Second Affiliated Hospital of Nanchang University from May 2018 to December 2019 were retrospectively analyzed. The correlation between lymph node metastasis and preoperative inflammatory markers, clinicopathological factors and tumor markers were analyzed. Logistic regression was used to analyze the risk factors of lymph node metastasis, and R language was used to construct nomogram model for evaluating the risk of colorectal cancer lymph node metastasis before surgery, and drew a calibration curve and compared with actual observations. The Bootstrap method was used for internal verification, and the consistency index (C-index) was calculated to evaluate the accuracy of the model.ResultsThe results of univariate analysis showed that factors such as sex, age, tumor location, smoking history, hypertension and diabetes history were not significantly related to lymph node metastasis (all P>0.05). The factors related to lymph node metastasis were tumor size, T staging, tumor differentiation level, fibrinogen, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), fibrinogen/albumin ratio (FAR), fibrinogen/prealbumin ratio (FpAR), CEA, and CA199 (all P<0.05). The results of logistic regression analysis showed the FpAR [OR=3.630, 95%CI (2.208, 5.968), P<0.001], CA199 [OR=2.058, 95%CI (1.221, 3.470), P=0.007], CEA [OR=2.335, 95%CI (1.372, 3.975), P=0.002], NLR [OR=2.532, 95%CI (1.491, 4.301), P=0.001], and T staging were independent risk factors for lymph node metastasis. The above independent risk factors were enrolled to construct regression equation and nomogram model, the area under the ROC curve of this equation was 0.803, and the sensitivity and specificity were 75.2% and 73.5%, respectively. The consistency index (C-index) of the nomogram prediction model in this study was 0.803, and the calibration curve showed that the result of predicting lymph node metastasis was highly consistent with actual observations.ConclusionsFpAR>0.018, NLR>3.631, CEA>4.620 U/mL, CA199>21.720 U/mL and T staging are independent risk factors for lymph node metastasis. The nomogram can accurately predict the risk of lymph node metastasis in patients with colorectal cancer before surgery, and provide certain assistance in the formulation of clinical diagnosis and treatment plans.

    Release date:2021-09-06 03:43 Export PDF Favorites Scan
  • Advances in machine learning in treatment and diagnosis of liver disease

    Objective To summarize advances in the application of machine learning in the diagnosis and treatment of liver disease. Method The recent literatures on the progress of machine learning in the diagnosis, treatment and prognosis of liver diseases were reviewed. Results Machine learning could be used to diagnose and categorize substantial liver lesions, tumourous lesions and rare liver diseases at an early stage, which could facilitate clinicians to take timely and appropriate treatment measures. Machine learning was helpful in informing clinicians in choosing the best treatment decision, which was conducive to reducing medical risks. It could also help to determine the prognosis of patients in a comprehensive manner, and provide assistance in formulating early rehabilitation treatment plans, adjusting follow-up strategies and improving future prognosis. Conclusions Multiple types of machine learning algorithms have achieved positive results in the clinical application of liver diseases by constructing different prediction models, and have great potential and excellent prospects in multiple aspects such as diagnosis, treatment and prognosis of liver diseases.

    Release date: Export PDF Favorites Scan
  • Construction and validation of risk prediction model for breast cancer bone metastasis

    ObjectiveTo identify the risk factors of bone metastasis in breast cancer and construct a predictive model. MethodsThe data of breast cancer patients met inclusion and exclusion criteria from 2010 to 2015 were obtained from the SEER*Stat database. Additionally, the data of breast cancer patients diagnosed with distant metastasis in the Affiliated Hospital of Southwest Medical University from 2021 to 2023 were collected. The patients from the SEER database were randomly divided into training (70%) and validation (30%) sets using R software, and the breast cancer patients from the Affiliated Hospital of Southwest Medical University were included in the validation set. The univariate and multivariate logistic regressions were used to identify risk factors of breast cancer bone metastasis. A nomogram predictive model was then constructed based on these factors. The predictive effect of the nomogram was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis. ResultsThe study included 8 637 breast cancer patients, with 5 998 in the training set and 2 639 (including 68 patients in the Affiliated Hospital of Southwest Medical University) in the validation set. The statistical differences in the race and N stage were observed between the training and validation sets (P<0.05). The multivariate logistic regression analysis revealed that being of white race, having a low histological grade (Ⅰ–Ⅱ), positive estrogen and progesterone receptors status, negative human epidermal growth factor receptor 2 status, and non-undergoing surgery for the primary breast cancer site increased the risk of breast cancer bone metastasis (P<0.05). The nomogram based on these risk factors showed that the AUC (95% CI) of the training and validation sets was 0.676 (0.533, 0.744) and 0.690 (0.549, 0.739), respectively. The internal calibration using 1 000 Bootstrap samples demonstrated that the calibration curves for both sets closely approximated the ideal 45-degree reference line. The decision curve analysis indicated a stronger clinical utility within a certain probability threshold range. ConclusionsThis study constructs a nomogram predictive model based on factors related to the risk of breast cancer bone metastasis, which demonstrates a good consistency between actual and predicted outcomes in both training and validation sets. The nomogram shows a stronger clinical utility, but further analysis is needed to understand the reasons of the lower differentiation of nomogram in both sets.

    Release date:2024-02-28 02:42 Export PDF Favorites Scan
  • Construction of a prediction model for postoperative recurrence of granulomatous mastitis in the mass stage based on machine learning

    ObjectiveTo predict the risk factors affecting postoperative recurrence of granulomatous lobular mastitis (GLM) in the mass stage by machine learning algorithm, and to provide a reference for the early identification and prevention of postoperative recurrence of GLM in the mass stage. MethodsThe electronic medical records and follow-up data of patients with GLM in the Department of Breast Disease Unit, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine from October 2020 to January 2023 were selected. A total of 340 patients with GLM in the mass stage who met the inclusion and exclusion criteria were selected as the research subjects. According to whether the patients relapsed after surgery, they were divided into recurrence group and non-recurrence group. The collected cases were randomly divided into training set and test set according to the ratio of 7:3. In the training set, the recurrence prediction model was constructed by using traditional logistic regression and three machine learning algorithms: artificial neural network, random forest and XGBoost (extrem gradient boosting). In the test set, the performance of the model was evaluated by sensitivity, specificity, accuracy,positive predictive value, negative predictive value, F1 value and area under the curve (AUC) value. The Shapley Additive exPlanation (SHAP) method was used to explore the important variables that affect the optimal model in identifying postoperative recurrence in the GLM mass phase. The optimal risk cutoff value of the prediction model was determined by the Youden index. Based on this, the postoperative patients in the GLM mass phase of the external test set were divided into high-risk and low-risk groups. ResultsA total of 392 patients who met the GLM mass stage were included, and 52 cases were excluded according to the exclusion criteria, and 340 cases were finally included, including 60 cases in the recurrence group and 280 cases in the non-recurrence group. Based on the results of univariate analysis, correlation analysis and clinically meaningful influencing factors, 12 non-zero coefficient characteristic variables were screened for the construction of the prediction model, and these 12 characteristic variables included other disease history, number of miscarriages, breastfeeding duration of the affected breast, history of milk stasis, lesion location, nipple indentation, fluctuation sensation, low-density lipoprotein, testosterone, previous antibiotic therapy, previous oral hormone medication, and perioperative traditional Chinese medicine treatment duration. The logistic regression prediction model, artificial neural network, random forest and XGBoost prediction models were constructed, and the results showed that the accuracy, positive predictive value and negative predictive value of the four prediction models were all >75%, among which the XGBoost model had the best performance, with accuracy, specificity, sensitivity, AUC, positive predictive value, negative predictive value and F1 values of 0.93, 0.99, 0.65, 0.87, 0.92, 0.93 and 0.76, respectively. SHAP method found that the duration of traditional Chinese medicine treatment during perioperative period, the duration of breast-feeding on the affected side, low density lipoprotein, testosterone and previous hormone drugs were the top five factors affecting XGBoost model to identify postoperative recurrence of GLM in mass stage. ConclusionsCompared with the traditional Logistic regression prediction model, the models based on machine learning for identifying postoperative recurrence in the GLM mass phase showed better performance, among which the XGBoost model performed best. Targeted preventive measures can be given based on the above risk factors to improve the postoperative prognosis of the GLM mass phase.

    Release date:2024-12-27 11:26 Export PDF Favorites Scan
  • Predictive value of the simplified signs scoring system for the severity and prognosis of patients with COVID-19: A multicenter observational study

    ObjectiveTo explore the predictive value of a simplified signs scoring system for the severity and prognosis of patients with coronavirus disease 2019 (COVID-19). Methods Clinical data of 1 605 confirmed patients with COVID-19 from January to May 2020 in 45 hospitals of Sichuan and Hubei Provinces were retrospectively analyzed. The patients were divided into a mild group (n=1150, 508 males, average age of 51.32±16.26 years) and a severe group (n=455, 248 males, average age of 57.63±16.16 years). ResultsAge, male proportion, respiratory rate, systolic blood pressure and mean arterial pressure in the severe group were higher than those in the mild group (P<0.05). Peripheral oxygen saturation (SpO2) and Glasgow coma scale (GCS) were lower than those in the mild group (P<0.05). Multivariate logistic regression analysis showed that age, respiratory rate, SpO2, and GCS were independent risk factors for severe patients with COVID-19. Based on the above indicators, the receiver operating characteristic (ROC) curve analysis showed that the area under the curve of the simplified signs scoring system for predicting severe patients was 0.822, which was higher than that of the quick sequential organ failure assessment (qSOFA) score and modified early warning score (MEWS, 0.629 and 0.631, P<0.001). The ROC analysis showed that the area under the curve of the simplified signs scoring system for predicting death was 0.796, higher than that of qSOFA score and MEWS score (0.710 and 0.706, P<0.001). ConclusionAge, respiratory rate, SpO2 and GCS are independent risk factors for severe patients with COVID-19. The simplified signs scoring system based on these four indicators may be used to predict patient's risk of severe illness or early death.

    Release date:2023-03-01 04:15 Export PDF Favorites Scan
  • Establishment and validation of a risk prediction model based on CT and serum markers for disease progression in CTD-ILD patients

    Objective To clarify the specific clinical predictive efficacy of CT and serological indicators for the progression of connective tissue disease-associated interstitial lung disease (CTD-ILD) to progressive pulmonary fibrosis (PPF). Methods Patients who were diagnosed with CTD-ILD in Chest Hospital of Zhengzhou University Between January 2020 and December 2021 were recruited in the study. Clinical data and high-resolution CT results of the patients were collected. The patients were divided into a stable group and a progressive group (PPF group) based on whether PPF occurred during follow-up. COX proportional hazards regression was used to identify risk factors affecting the progression of CTD-ILD to PPF, and a risk prediction model was established based on the results of the COX regression model. The predictive efficacy of the model was evaluated through internal cross-validation. Results A total of 194 patients diagnosed with CTD-ILD were enrolled based on the inclusion and exclusion criteria. Among them, 34 patients progressed to PPF during treatment, and 160 patients did not progress. The variables obtained at lambda$1se in LASSO regression were ANCA associated vasculitis, lymphocytes, albumin, erythrocyte sedimentation rate, and serum ferritin. Multivariate COX regression analysis showed that the extent of fibrosis, serum ferritin, albumin, and age were independent risk factors for the progression of CTD-ILD to PPF (all P<0.05). A prediction model was established based on the results of the multivariate COX regression analysis. The area under the receiver operator characteristic curve at 6 months, 9 months, and 12 months was 0.989, 0.931, and 0.797, respectively, indicating that the model has good discrimination and sensitivity, and good predictive efficacy. The calibration curve showed a good overlap between predicted and actual values. Conclusions The extent of fibrosis, serum ferritin, albumin, and age are independent risk factors for the progression of CTD-ILD to PPF. The model established based on this and externally validated shows good predictive efficacy.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
  • Interpretation of the TRIPOD-LLM reporting guideline for studies using large language models

    As the volume of medical research using large language models (LLM) surges, the need for standardized and transparent reporting standards becomes increasingly critical. In January 2025, Nature Medicine published statement titled by TRIPOD-LLM reporting guideline for studies using large language models. This represents the first comprehensive reporting framework specifically tailored for studies that develop prediction models based on LLM. It comprises a checklist with 19 main items (encompassing 50 sub-items), a flowchart, and an abstract checklist (containing 12 items). This article provides an interpretation of TRIPOD-LLM’s development methods, primary content, scope, and the specific details of its items. The goal is to help researchers, clinicians, editors, and healthcare decision-makers to deeply understand and correctly apply TRIPOD-LLM, thereby improving the quality and transparency of LLM medical research reporting and promoting the standardized and ethical integration of LLM into healthcare.

    Release date:2025-06-24 11:15 Export PDF Favorites Scan
  • Risk factor analysis and prediction model construction for hospital infections in tertiary hospitals in Gansu Province

    Objective To explore the independent risk factors for hospital infections in tertiary hospitals in Gansu Province, and establish and validate a prediction model. Methods A total of 690 patients hospitalized with hospital infections in Gansu Provincial Hospital between January and December 2021 were selected as the infection group; matched with admission department and age at a 1∶1 ratio, 690 patients who were hospitalized during the same period without hospital infections were selected as the control group. The information including underlying diseases, endoscopic operations, blood transfusion and immunosuppressant use of the two groups were compared, the factors influencing hospital infections in hospitalized patients were analyzed through multiple logistic regression, and the logistic prediction model was established. Eighty percent of the data from Gansu Provincial Hospital were used as the training set of the model, and the remaining 20% were used as the test set for internal validation. Case data from other three hospitals in Gansu Province were used for external validation. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were used to evaluate the model effectiveness. Results Multiple logistic regression analysis showed that endoscopic therapeutic manipulation [odds ratio (OR)=3.360, 95% confidence interval (CI) (2.496, 4.523)], indwelling catheter [OR=3.100, 95%CI (2.352, 4.085)], organ transplantation/artifact implantation [OR=3.133, 95%CI (1.780, 5.516)], blood or blood product transfusions [OR=3.412, 95%CI (2.626, 4.434)], glucocorticoids [OR=2.253, 95%CI (1.608, 3.157)], the number of underlying diseases [OR=1.197, 95%CI (1.068, 1.342)], and the number of surgical procedures performed during hospitalization [OR=1.221, 95%CI (1.096, 1.361)] were risk factors for hospital infections. The regression equation of the prediction model was: logit(P)=–2.208+1.212×endoscopic therapeutic operations+1.131×indwelling urinary catheters+1.142×organ transplantation/artifact implantation+1.227×transfusion of blood or blood products+0.812×glucocorticosteroids+0.180×number of underlying diseases+0.200×number of surgical procedures performed during the hospitalization. The internal validation set model had a sensitivity of 72.857%, a specificity of 77.206%, an accuracy of 76.692%, and an AUC value of 0.817. The external validation model had a sensitivity of 63.705%, a specificity of 70.934%, an accuracy of 68.669%, and an AUC value of 0.726. Conclusions Endoscopic treatment operation, indwelling catheter, organ transplantation/artifact implantation, blood or blood product transfusion, glucocorticoid, number of underlying diseases, and number of surgical cases during hospitalization are influencing factors of hospital infections. The model can effectively predict the occurrence of hospital infections and guide the clinic to take preventive measures to reduce the occurrence of hospital infections.

    Release date:2024-04-25 02:18 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content