west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "resistant organism" 17 results
  • Effect of bundle strategies on the prevention and control of multidrug-resistant organisms in intensive care unit

    ObjectiveTo evaluate the effect of bundle strategies on the prevention and control of multidrug-resistant organisms (MDROs) in intensive care unit (ICU), in order to effectively prevent and control the severe situation of multiple drug-resistant bacteria in ICU.MethodsWe selected patients who admitted into the ICU from January 2016 to December 2017 as study subjects, and monitored 6 types of MDROs. Basic information was surveyed and collected from January to December 2016 (before intervention), while bundle strategies on MDROs were implemented from January to December 2017 (after intervention), including issusing isolation orders, hanging isolation marks, wearing isolation clothes, using medical articles exclusively, cleaning and disinfecting environment, implementing hand hygiene, etc. Then we compared the MDRO detection rate, nosocomial infection rate, MDRO nosocomial infection rate, and compliance rates of interventions between the two periods.ResultsThe MDRO detection rate before intervention was 77.10%, and that after intervention was 49.12%, the difference between the two periods was statistically significant (χ2=69.834, P<0.001). The nosocomial infection rate of ICU decreased from 23.51% before intervention to 15.23% after intervention, the MDRO nosocomial infection rate decreased from 13.70% before intervention to 5.84% after intervention, and the differences between the two periods were statistically significant (χ2=8.594, P=0.003; χ2=13.722, P<0.001). The compliance rates of doctor’s isolation orders, hanging isolation marks, wearing isolation clothes, using medical articles exclusively, cleaning and disinfecting environment, and hand hygiene, as well as the correct rate of hand hygiene after intervention (92.12%, 93.55%, 81.77%, 84.24%, 82.90%, 77.39%, and 96.37%) were significantly higher than those before intervention (31.94%, 52.00%, 23.43%, 48.18%, 67.16%, 59.46%, and 88.64%), and the differences were all statistically significant (P<0.001).ConclusionThe implementation of the above bundle strategies on the prevention and control of MDROs can decrease the MDRO detection rate and MDRO nosocomial infection rate.

    Release date:2019-03-22 04:19 Export PDF Favorites Scan
  • Prevention and control strategies for carbapenem-resistant organism in medical institutions in China: a meta-analysis

    Objective To evaluate the efficiency of prevention and control strategies of carbapenem-resistant organism (CRO) in medical institutions in China using meta-analysis method. Methods PubMed, Embase, Medline (Ovid), Web of Science, China National Knowledge Infrastructure, Chongqing VIP and Wanfang Database were systematically searched for studies on CRO prevention and control in Chinese medical institutions from the establishment of databases to 2023 for meta-analysis. Results A total of 21 studies were included, consisting of 3 randomized controlled studies and 18 non-randomized controlled studies. The meta-analysis results showed that compared with standard prevention and control measures, strengthened intervention measures (including active screening, information-based transparent supervision mode, comprehensive intervention, and bundled prevention and control strategies) could effectively reduce the CRO infection rate [relative risk (RR)=0.40, 95% confidence interval (CI) (0.25, 0.65), P<0.05]. Proactive screening could effectively reduce the CRO infection rate [RR=0.52, 95%CI (0.30, 0.91), P<0.05] and carbapenem-resistant Enterobacteriaceae (CRE) infection rate [RR=0.47, 95%CI (0.24, 0.93), P<0.05]. Information-based transparent supervision could reduce the CRE infection rate by improving compliance with standard prevention and control measures [RR=0.42, 95%CI (0.28, 0.62), P<0.05]. Conclusions Compared with standard prevention and control measures, strengthened intervention measures can effectively reduce the risk of in-hospital transmission and infection of CRO. In clinical practice, bundled comprehensive intervention can be combined with information-based transparent supervision, and if necessary, proactive screening of CRO in high-risk populations should be carried out.

    Release date:2024-04-25 02:18 Export PDF Favorites Scan
  • Risk factors of multidrug-resistant organism infection in patients with car accident injuries in intensive care unit

    Objective To investigate the risk factors of multidrug-resistant organism (MDRO) infection in patients with car accident injuries in intensive care unit (ICU), providing clinical guidance for reducing MDRO infection in car accident patients. Methods The clinical data of patients with car accident injuries in Sichuan Provincial People’s Hospital between January 1st 2019 and February 28th 2023 were collected, and the relevant data were analyzed retrospectively to explore the risk factors of MDRO infection. Results A total of 141 patients with car accident injuries were collected, of whom 30 had MDRO infection. The proportions of males (P=0.012), indwelling catheters (P=0.005), mechanical ventilation (P=0.001), length of hospital stay (P<0.001), and total treatment costs (P<0.001) in the infection group were higher than those in the non-infection group. Multiple logistic regression analysis showed that male [odds ratio (OR)=3.797, 95% confidence interval (CI) (1.174, 12.275), P=0.026], mechanical ventilation [OR=4.596, 95%CI (1.538, 13.734), P=0.006], and length of hospital stay≥20 d [OR=1.014, 95%CI (1.001, 1.028), P=0.037] were independent risk factors for MDRO infection in car accident patients. Conclusions Male, mechanical ventilation, and increased length of hospital stay are independent risk factors for MDRO infection in car accident patients. For such patients, the prevention and control measures of hospital infection should be strictly implemented to reduce the risk of infection.

    Release date:2024-04-25 02:18 Export PDF Favorites Scan
  • Multicenter expert consensus on prevention and treatment of infections caused by multi-drug resistant organisms after liver transplantation

    Liver transplantation is a most curative treatment for end-stage liver diseases. However, postoperative infection, especially the multi-drug resistant organisms infection, could contribute to the mortality after liver transplantation. Therefore, how to identify and prevent multi-drug resistant bacterial infection is the key to achieve improved postoperative outcomes after liver transplantation. The team of West China Hospital of Sichuan University, in collaboration with multiple Chinese medical centers, draw on the mature experiences of advanced countries in the field of transplantation jointly formulated the “Multicenter expert consensus on prevention and treatment of infections caused by multi-drug resistant organisms after liver transplantation”. The consensus had been developed around aspects such as epidemiological characteristics, antimicrobial uses, and prevention measurements of multi-drug resistant bacterial infection after liver transplantation.

    Release date:2025-02-08 09:34 Export PDF Favorites Scan
  • Analysis of the practice and continuous improvement of multi-disciplinary team management mode in the management of multidrug-resistant organisms

    ObjectiveTo explore the practical effects of multi-disciplinary team (MDT) management model in the management of multidrug-resistant organisms (MDROs).MethodsIn 2015, the multi-drug resistant MDT was established, and MDT meetings were held regularly to focus on the problems in the management of MDROs and related measures to prevent and control nosocomial infections of MDROs.ResultsThe detection rate of MDROs from 2014 to 2017 was 9.20% (304/3 303), 7.11% (334/4 699), 8.01% (406/5 072), and 7.81% (354/4 533), respectively. The difference was statistically significant (χ2=11.803, P=0.008), in which the detection rates of carbapenem-resistant Acinetobacter baumannii (CRABA), carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae (CRE) changed significantly (χ2=39.022, 17.052, 12.211; P<0.05). From 2014 to 2017, the proportion of multi-drug resistant infections decreased year by year, from 84.54% to 52.82%, and the proportion of multi-drug resistant hospital infections also declined, from 46.05% to 23.16%; the nosocomial infection case-time rate decreased from 0.24% to 0.13% year-on-year; the proportion of multi-drug resistant hospital infections in total hospital infections was 9.07%, 11.17%, 10.47%, and 6.16%, respectively; in the distribution of multi-drug resistant nosocomial infection bacteria, the proportion of methicillin-resistant Staphylococcus aureus, CRABA, CRE hospital infections accounted for the number of MDROs detected decreased year by year. The use rate of antibiotics decreased from 46.58% in 2014 to 42.93% in 2017, and the rate of pathogens increased from 64.83% in 2014 to 84.59% in 2017.ConclusionThe MDT management mode is effective for the management and control of MDROs, which can reduce the detection rate, infection rate, hospital infection rate, and antibacterial drug use rate, increase the pathogen detection rate, and make the prevention and control of MDROs more scientific and standardized.

    Release date:2019-03-22 04:19 Export PDF Favorites Scan
  • Study on the Seasonal Distribution of Multidrug-resistant Organism in Neurosurgical Intensive Care Unit

    ObjectiveTo analyze epidemic characteristics of multidrug-resistant organism (MDRO) in Neurosurgical Intensive Care Unit (NSICU), and to analyze the status of infection and colonization, in order to provide reference for constituting intervention measures. MethodsPatients who stayed in NSICU during January 2014 to April 2015 were actively monitored for the MDRO situation. ResultsA total of 218 MDRO pathogens were isolated from 159 patients, and 42 cases were healthcare-associated infections (HAI) among 159 patients. The Acinetobacter baumannii was the most common one in the isolated acinetobacter. Colonization rate was positively correlated with the incidence of HAI. From January to December, there was a significantly increase in the colonization rate, but not in the incidence of HAI. ConclusionThe main MDRO situation is colonization in NSICU. The obvious seasonal variation makes the HAI risk at different levels. So it is necessary that full-time and part-time HAI control staff be on alert, issue timely risk warning, and strengthen risk management. The Acinetobacter baumannii has become the number one target for HAI prevention and control in NSICU, so their apparent seasonal distribution is worthy of more attention, and strict implementation of HAI prevention and control measures should be carried out.

    Release date: Export PDF Favorites Scan
  • Effects of Active Intervention in Prevention and Control of Nosocomial Infection in ICU: A Non-concurrent Control Trial

    Objective To evaluate the effect of active screening and intervention of multidrug-resistant organisms (MDROs) on control nosocomial infection in the general intensive care unit (ICU). Methods A non-concurrent control trial was conducted in patients hospitalized in the ICU for more than 24 hours in the Second Affiliated Hospital of Fujian Medical University. Patients underwent active screening of MDROs for nasal vestibular swab, throat swab and rectal swab combined with further intensive intervention for patients with positive screening result during Sept. 2014 to Aug. 2015 were included as an intervention group, patients only underwent active screening during Sept. 2013 to Aug. 2014 were included as a screening group, and patients without undergoing active screening during Sept. 2012 to Aug. 2013 were as a control group. SPSS 19.0 software was used to compare the hospital infection rate and the infection rate of MDROs among the three groups. Results A total of 1 773 patients were included, of which 655 patients were in the intervention group, 515 patients were in the screening group, and 603 patients were in the control group. The difference of hospital infection rates among the three groups was statistically significant (χ2=21.087, P < 0.001), and further pairwise comparison results showed that the intervention group was lower than the screening group (χ2=5.891, P=0.015), and the screening group was lower than the control group (χ2=4.259, P=0.039). The adjustment daily infection rate of the intervention group, screening group and control group were 6.69‰, 10.88‰, and 15.39‰, respectively. The difference of MDROs hospital infection rates among the three groups was statistically significant (χ2=21.039, P < 0.001), and further pairwise comparison results showed that the intervention group was lower than the screening group (χ2=5.936, P=0.015), and the screening group was lower than the control group (χ2=5.798, P=0.016). The MDROs thousand daily infection rate of the intervention group was lower than that of the screening group (3.90‰ vs. 7.30‰, χ2=5.999, P=0.014). Conclusion The active screening plus intensive intervention of MDROs can effectively reduce the incidence rates of nosocomial infections and MDROs infections in ICU.

    Release date: Export PDF Favorites Scan
  • Progress in antimicrobial stewardship in intensive care units

    Antimicrobial stewardship (AMS) is an important means to control bacterial resistance. The unique situation of intensive care unit (ICU) poses a challenge to AMS. This article reviews the literature on AMS in the ICU at home and abroad in recent years, and summarizes the related measures of AMS. Effective AMS measures in the ICU include setting up a multidisciplinary AMS team, using rapid microbial diagnosis technology to shorten the time of diagnosis, using non-culture methods to assess the necessity of antimicrobial therapy for patients with suspected sepsis, and evaluating the effectiveness of antimicrobial therapy as early as possible and optimizing it. These initiatives aim to increase the rational use of antimicrobials in ICU, reduce the risk of multidrug-resistant infections, and improve patients’ condition.

    Release date:2022-04-25 03:47 Export PDF Favorites Scan
  • Logistic regression analysis for risk factors of common multidrug-resistant organism infections in a general hospital

    ObjectiveTo analyze the risk factors of multidrug-resistant organism (MDRO) nosocomial infection, and to provide the scientific basis for the prevention and control of MDRO nosocomial infection.MethodsPatients with MDRO in Chengdu Shangjin Nanfu Hospital from 2014 to 2015 were retrospectively collected. The patients were divided into the MDRO nosocomial infection group and the MDRO non-nosocomial infection group. The MDRO infection/colonization, bacterial strain type, specimens type and distribution characteristics of clinical departments were analyzed. Single factor and multiple factor logistic regression analysis were used to analyze the risk factors of MDRO nosocomial infection.ResultsA total of 357 patients of MDRO infection/colonization were monitored, of which 147 times (144 patients) were with nosocomial infections and 213 times (213 patients) were without nosocomial infections. MDRO nosocomial infection incidence rate/cases incidence rate were 0.18%. A total of 371 MDRO bacterial strains were detected, of which 147 (39.62%) were with nosocomial infection and 224 (60.38%) were without nosocomial infections. The MDRO non-nosocomial infections included 175 strains (47.17%) in community infection and 49 strains (13.12%) in colonization. Carbapenem-resistant Acinetobacter baumannii (52.83%) was the main MDRO strains. Sputum (57.14%) and secretion (35.04%) were main specimens. The top three departments of MDRO nosocomial infection strains were orthopedics (32.65%), ICU (27.89%), neurosurgery (13.61%). ICU [odds ratio (OR)=3.596, 95% confidence interval (CI) (1.124, 11.501), P=0.031], surgical history [OR=2.858, 95%CI (1.061, 7.701), P=0.038], indwelling urinary catheter [OR=3.250, 95%CI (1.025, 10.306), P=0.045], and using three or more antibiotics [OR=4.228, 95%CI (1.488, 12.011), P=0.007] were the independent risk factors of MDRO nosocomial infection.ConclusionEffective infection prevention and control measures should be adopted for the risk factors of MDRO nosocomial infection to reduce the incidence rate of MDRO nosocomial infection.

    Release date:2020-04-23 06:56 Export PDF Favorites Scan
  • Study on the source and distribution of patients with extranocomial infection of multidrug resistant organisms

    Objective To explore the source and distribution of patients with multidrug resistant organisms (MDROs) acquired (infections/colonizations) outside the hospital and to provide a reference for guiding proactive interventions for nosocomial transmission of MDROs. Methods Bacterial culture results and clinical data of patients newly admitted to Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospita1 were retrospectively investigated between January 1st 2022 and December 31st 2023. The types of MDROs infections/colonizations, patient sources, and triple distributions of patients with nosocomial acquisition of MDROs were analyzed. Results A total of 293 patients with 308 infections/colonizations were investigated in the extranocomial infection of MDROs, 198110 newly admitted patients during the same period, and the total case rate of extranocomial infection of MDROs was 0.155% (308/198110). Among them, the case rate of extranocomial infection of methicillin-resistant Staphylococcus aureus (0.062%) and carbapenem resistant Acinetobacter baumannii (0.044%) were higher than those of other types of bacteria. The case rate of extranocomial infection of MDROs was statistically significant in terms of the distribution of the route of admission, gender of the patient, age of the patient, department of admission, and time of admission (P<0.001); The distribution of patients with extranocomial infection of various types of MDROs was correlated with admission route, patient age, and admission department (P<0.001), and the associations with patient gender and admission time were not statistically significant (P>0.05). Conclusions The total case rate of extranocomial infection of MDROs in the institution was at a relatively low level, and conducting large-scale active screening has certain limitations. Active screening factors should be considered in a comprehensive manner to capture differences in epidemiological characteristics of patients with extranocomial infection of MDROs, and targeted prevention and intervention should be carried out to achieve a reduction in infections from MDROs in hospitals.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content