west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "support vector machine" 34 results
  • Recognition of Low Arousal Level Electroencephalogram in the Vigilance Based on Wavelet Packet Rhythm and Support Vector Machine

    Poor and monotonous work could easily lead to a decrease of arousal level of the monitoring work personnel. In order to improve the performance of monitoring work, low arousal level needs to be recognized and awakened. We proposed a recognition method of low arousal by the electroencephalogram (EEG) as the object of study to recognize the low arousal level in the vigilance. We used wavelet packet transform to decompose the EEG signal so the EEG rhythms of each component were obtained, and then we calculated the parameters of relative energy and energy ratio of high-low frequency, and constructed the feature vector to monitor low arousal state in the operation. We finally used support vector machine (SVM) to recognize the low arousal state in the simulate operation. The experimental results showed that the method introduced in this article could well distinguish low arousal level from arousal level in the vigilance and it could also get a high recognition rate. Have been compared with other analysis methods, the present method could more effectively recognize low arousal level and provide better technical support for wake-up mechanism of low arousal state.

    Release date: Export PDF Favorites Scan
  • Application of machine learning algorithm in clinical diagnosis and survival prognosis analysis of lung cancer

    Lung cancer is one of the tumors with the highest incidence rate and mortality rate in the world. It is also the malignant tumor with the fastest growing number of patients, which seriously threatens human life. How to improve the accuracy of diagnosis and treatment of lung cancer and the survival prognosis is particularly important. Machine learning is a multi-disciplinary interdisciplinary specialty, covering the knowledge of probability theory, statistics, approximate theory and complex algorithm. It uses computer as a tool and is committed to simulating human learning methods, and divides the existing content into knowledge structures to effectively improve learning efficiency and being able to integrate computer science and statistics into medical problems. Through the introduction of algorithm to absorb the input data, and the application of computer analysis to predict the output value within the acceptable accuracy range, identify the patterns and trends in the data, and finally learn from previous experience, the development of this technology brings a new direction for the diagnosis and treatment of lung cancer. This article will review the performance and application prospects of different types of machine learning algorithms in the clinical diagnosis and survival prognosis analysis of lung cancer.

    Release date:2022-06-24 01:25 Export PDF Favorites Scan
  • Study on aided diagnosis for cardiovascular diseases based on Relief algorithm

    The study was intended to introduce a novel method for aided diagnosis of cardiovascular diseases based on photoplethysmography (PPG). For this purpose, 40 volunteers were recruited in this study, of whom the physiological and pathological information was collected, including blood pressure and simultaneous PPG data on fingertips, by using a sphygmomanometer and a smart fingertip sensor. According to the PPG signal and its first and second derivatives, 52 features were defined and acquired. The Relief feature selection algorithm was performed to calculate the contribution of each feature to cardiovascular diseases. And then 10 core features which had the greatest contribution were selected as an optimal feature subset. Finally, the efficiency of the Relief feature selection algorithm was demonstrated by the results of k-nearest neighbor (kNN) and support vector machine (SVM) classifier applications of the features. The prediction accuracy of kNN model and SVM reached 66.67% and 83.33% respectively, indicating that: ① Age was the foremost feature for aided diagnosis of cardiovascular diseases; ② The optimal feature subset provided an important evaluation of cardiovascular health status. The obtained results showed that the application of the Relief feature selection algorithm provided high accuracy in aided diagnosis of cardiovascular diseases.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Study on Sleep Staging Based on Support Vector Machines and Feature Selection in Single Channel Electroencephalogram

    Sleep electroencephalogram (EEG) is an important index in diagnosing sleep disorders and related diseases. Manual sleep staging is time-consuming and often influenced by subjective factors. Existing automatic sleep staging methods have high complexity and a low accuracy rate. A sleep staging method based on support vector machines (SVM) and feature selection using single channel EEG single is proposed in this paper. Thirty-eight features were extracted from the single channel EEG signal. Then based on the feature selection method F-Score's definition, it was extended to multiclass with an added eliminate factor in order to find proper features, which were used as SVM classifier inputs. The eliminate factor was adopted to reduce the negative interaction of features to the result. Research on the F-Score with an added eliminate factor was further accomplished with the data from a standard open source database and the results were compared with none feature selection and standard F-Score feature selection. The results showed that the present method could effectively improve the sleep staging accuracy and reduce the computation time.

    Release date: Export PDF Favorites Scan
  • Multi-scale Permutation Entropy and Its Applications in the Identification of Seizures

    The electroencephalogram (EEG) has proved to be a valuable tool in the study of comprehensive conditions whose effects are manifest in the electrical brain activity, and epilepsy is one of such conditions. In the study, multi-scale permutation entropy (MPE) was proposed to describe dynamical characteristics of EEG recordings from epilepsy and healthy subjects, then all the characteristic parameters were forwarded into a support vector machine (SVM) for classification. The classification accuracies of the MPE with SVM were evaluated by a series of experiments. It is indicated that the dynamical characteristics of EEG data with MPE could identify the differences among healthy, inter-ictal and ictal states, and there was a reduction of MPE of EEG from the healthy and inter-ictal state to the ictal state. Experimental results demonstrated that average classification accuracy was 100% by using the MPE as a feature to characterize the healthy and seizure, while 99.58% accuracy was obtained to distinguish the seizure-free and seizure EEG. In addition, the single-scale permutation entropy (PE) at scales 1-5 was put into the SVM for classification at the same time for comparative analysis. The simulation results demonstrated that the proposed method could be a very powerful algorithm for seizure prediction and could have much better performance than the methods based on single scale PE.

    Release date: Export PDF Favorites Scan
  • Research on classification of brain functional network features during mental fatigue

    This study is aimed to investigate objective indicators of mental fatigue evaluation to improve the accuracy of mental fatigue evaluation. Mental fatigue was induced by a sustained cognitive task. The brain functional networks in two states (normal state and mental fatigue state) were constructed based on electroencephalogram (EEG) data. This study used complex network theory to calculate and analyze nodal characteristics parameters (degree, betweenness centrality, clustering coefficient and average path length of node), and served them as the classification features of support vector machine (SVM). Parameters of the SVM model were optimized by gird search based on 6-fold cross validation. Then, the subjects were classified. The results show that characteristic parameters of node of brain function networks can be divided into normal state and mental fatigue state, which can be used in the objective evaluation of mental fatigue state.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Identification of nucleosome positioning using support vector machine method based on comprehensive DNA sequence feature

    In this article, based on z-curve theory and position weight matrix (PWM), a model for nucleosome sequences was constructed. Nucleosome sequence dataset was transformed into three-dimensional coordinates, PWM of the nucleosome sequences was calculated and the similarity score was obtained. After integrating them, a nucleosome feature model based on the comprehensive DNA sequences was obtained and named CSeqFM. We calculated the Euclidean distance between nucleosome sequence candidates or linker sequences and CSeqFM model as the feature dataset, and put the feature datasets into the support vector machine (SVM) for training and testing by ten-fold cross-validation. The results showed that the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of identifying nucleosome positioning for S. cerevisiae were 97.1%, 96.9%, 94.2% and 0.89, respectively, and the area under the receiver operating characteristic curve (AUC) was 0.980 1. Compared with another z-curve method, it was found that our method had better identifying effect and each evaluation performance showed better superiority. CSeqFM method was applied to identify nucleosome positioning for other three species, including C. elegans, H. sapiens and D. melanogaster. The results showed that AUCs of the three species were all higher than 0.90, and CSeqFM method also showed better stability and effectiveness compared with iNuc-STNC and iNuc-PseKNC methods, which is further demonstrated that CSeqFM method has strong reliability and good identification performance.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Automatic detection and classification of atrial fibrillation using RR intervals and multi-eigenvalue

    Atrial fibrillation (AF) is a common arrhythmia disease. Detection of atrial fibrillation based on electrocardiogram (ECG) is of great significance for clinical diagnosis. Due to the non-linearity and complexity of ECG signals, the procedure to manually diagnose the ECG signals takes a lot of time and is prone to errors. In order to overcome the above problems, a feature extraction method based on RR interval is proposed in this paper. The discrete degree of RR interval is described with the robust coefficient of variation (RCV), the distribution shape of RR interval is described with the skewness parameter (SKP), and the complexity of RR interval is described with the Lempel-Ziv complexity (LZC). Finally, the feature vectors of RCV, SKP, and LZC are input into the support vector machine (SVM) classifier model to achieve automatic classification and detection of atrial fibrillation. To verify the validity and practicability of the proposed method, the MIT-BIH atrial fibrillation database was used to verify the data. The final classification results show that the sensitivity is 95.81%, the specificity is 96.48%, the accuracy is 96.09%, and the specificity of 95.16% is achieved in the MIT-BIH normal sinus rhythm database. The experimental results show that the proposed method is an effective classification method for atrial fibrillation.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Prediction of epilepsy based on common spatial model algorithm and support vector machine double classification

    At present the prediction method of epilepsy patients is very time-consuming and vulnerable to subjective factors, so this paper presented an automatic recognition method of epilepsy electroencephalogram (EEG) based on common spatial model (CSP) and support vector machine (SVM). In this method, the CSP algorithm for extracting spatial characteristics was applied to the detection of epileptic EEG signals. However, the algorithm did not consider the nonlinear dynamic characteristics of the signals and ignored the time-frequency information, so the complementary characteristics of standard deviation, entropy and wavelet packet energy were selected for the combination in the feature extraction stage. The classification process adopted a new double classification model based on SVM. First, the normal, interictal and ictal periods were divided into normal and paroxysmal periods (including interictal and ictal periods), and then the samples belonging to the paroxysmal periods were classified into interictal and ictal periods. Finally, three categories of recognition were realized. The experimental data came from the epilepsy study at the University of Bonn in Germany. The average recognition rate was 98.73% in the first category and 99.90% in the second category. The experimental results show that the introduction of spatial characteristics and double classification model can effectively solve the problem of low recognition rate between interictal and ictal periods in many literatures, and improve the identification efficiency of each period, so it provides an effective detecting means for the prediction of epilepsy.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Resting-state electroencephalogram classification of patients with schizophrenia or depression

    The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content