Large defects of jaw caused by tumor, trauma and so on in oral and maxillofacial region lead to facial deformity, language and chewing dysfunction, which severely damage the patient’s life quality. Three-dimensional printing (3DP) is also named additive manufacturing (AM), which can print materials layer by layer to create three-dimensional objects. The complex shape of jaw defects can be accurately reconstructed using 3DP scaffold combined with image data, computer-aided-design and manufacture. It has specific advantages compared with traditional way of jaw reconstruction and has attracted much attention in the field of jaw tissue engineering recently. This article presented the progress of 3DP scaffold and its application in jaw reconstruction, providing a new idea for jaw reconstruction.
Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.
ObjectiveTo preliminary study on the feasibility of constructing three-dimensional (3D) hippocampal neural network in vitro by using microfluidic technology.MethodsA network patterned microfluidic chip was designed and fabricated by standard wet etching process. The primary hippocampal neurons of neonatal Sprague Dawley rats were isolated and cultured, and then inoculated on microfluidic chip for culture. Immunofluorescence staining was used to observe the growth of hippocampal neurons at 3, 5, and 7 days of culture and electrophysiological detection of hippocampal neuron network at 7 days of culture.ResultsThe results showed that the number of hippocampal neurons increased gradually with the prolongation of culture time, and the neurite of neurons increased accordingly, and distributed uniformly and regularly in microfluidic chip channels, suggesting that the 3D hippocampal neuron network was successfully constructed in vitro. Single and multi-channel spontaneous firing signals of hippocampal neuronal networks could be detected at 7 days of culture, suggesting that neuronal networks had preliminary biological functions.ConclusionPatterned microfluidic chips can make hippocampal neurons grow along limited paths and form 3D neuron networks with corresponding biological functions such as signal transduction, which lays a foundation for further exploring the function of neuron networks in vitro.
Objective To analyze the technical notes, effectiveness, and current issues of real-time three-dimensional CT navigation-guided full-endoscopic lumbar interbody fusion. Methods Between April 2020 and October 2021, a total of 27 patients received real-time three-dimensional CT navigation-guided full-endoscopic lumbar interbody fusion. There were 18 males and 9 females with an average age of 63.2 years (range, 48-84 years). There were 6 cases of lumbar spinal stenosis, 1 case of lumbar instability, 9 cases of lumbar spinal stenosis with instability, 3 cases of degenerative spondylolisthesis, 6 cases of isthmus spondylolisthesis, and 2 cases of recurrent lumbar disc herniation. All patients showed neurological symptoms before operation (ipsilateral symptom for 15 cases and bilateral symptom for 12 cases). The symptom duration was 1-300 months (median, 24 months). The operations were performed via transforaminal approach in 8 cases, trans-facet joint approach in 18 cases, and combined approaches in 1 case. A total of 32 levels were fused, including 23 single-level cases, 3 two-level cases, and 1 three-level case. Lumbar fusion segment was L2, 3 in 1 case, L3, 4 in 4 cases, L4, 5 in 20 cases, and L5, S1 in 7 cases. The operation time, intraoperative estimated blood loss (IEBL), and perioperative complications were recorded. The improvement of intervertebral space height at fusion level was measured, and the accuracy of percutaneous pedicle screw (PPS) and Cage placement was also evaluated based on CT images performed at 1 week postoperatively. Visual analogue scale (VAS) score for both low back pain and leg pain, Japanese Orthopaedic Association (JOA) score, and Oswestry disability index (ODI) were evaluated before operation, at 1 week postoperatively, and at last follow-up. Satisfaction to effectivenss were assessed by patients using modified MacNab criteria at last follow-up. Results The operation time was ranged from 255 to 805 minutes (mean, 424.9 minutes). IEBL was 150-290 mL (mean, 219.3 mL). All patients received follow-up with the duration from 4 to 22 months (mean, 12.4 months). At 1 week postoperatively and last follow-up, VAS scores of low back pain and leg pain, JOA score, and ODI were significantly improved when compared with those before operation (P<0.05). At last follow-up, the clinical indicators were similar in comparison with those at 1 week postoperatively (P>0.05). There were 26 patients and 1 patient who respectively ranked excellent and mild in terms of effectiveness according to the modified MacNab criteria, with the excellent and good rate of 96.3%. There was 1 patient who suffered from incomplete injury of L5 nerve root and partial neurological function recovered after 3-month conservative treatments. There were 118 implanted PPSs, and 116 of them were implanted under navigation. There were 33 Cages that were implanted under navigation. The accuracy of PPS and Cage placement was 99.1% and 97.0% respectively based on CT performed at 1 week postoperatively. The postoperative intervertebral space height was significantly increased in comparison with that before operation (P<0.05). During follow-up, mild Cage subsidence was observed in 1 patient, whereas no fixation loosing was found. Conclusion Real-time three-dimensional CT navigation-guided full-endoscopic lumbar interbody fusion has great safety and effectiveness with satisfactory preliminary clinical results. Design and further improvement of surgical equipment and instruments are expected to resolve the current technical difficulties.
ObjectiveTo investigate the changes of facial soft tissue before and after orthognathic surgery in patients with skeletal Class Ⅲ malocclusion.MethodsBetween August 2016 and April 2017, 30 patients with skeletal Class Ⅲ malocclusion who underwent maxillary LeFort Ⅰ osteotomy and sagittal split mandible osteotomy were selected as study subjects. Among them, 11 were male and 19 were female with an average age of 22.6 years (range, 18-35 years). Full head CT scan and facial soft tissue three-dimensional image scan were performed within 2 weeks before surgery and at 6 months after surgery. A three-dimensional facial image model was established using Artec Studio 11.0 and CMF Proplan 3.0 software to analyze the facial soft tissue changes before and after surgery. The soft tissue anatomical landmarks in each area of the face were measured and compared before and after surgery.ResultsThe area of facial soft tissue change after surgery was the maxillary nose and the lower jaw area, and the two sides did not exceed the vertical boundary of the outer canthus. After surgery, the horizontal points of bilateral alar bases and bilateral cheeks changed significantly (P<0.05). The sagittal points of subnasale, pronasale, bilateral alar bases, upper lip margin significantly forwarded (P<0.05); the sagittal points of the bilateral cheilions, lower lip margin, midpoint of chin-lip groove, pogonion, and menton significantly backwarded (P<0.05). The vertical points of the upper lip margin, bilateral cheilions, lower lip margin, bilateral cheeks, and bilateral inner canthus points significantly descended (P<0.05), and the vertical point of the menton significantly elevated (P<0.05). After surgery, the nasal column was significantly shortened, the upper lip got longer and the alar base widened when compared with those before surgery (P<0.05).ConclusionThe overall change of face after double jaw surgery is shorter and fuller, and the mandible of facial soft tissue change is larger than that of maxillary, which suggests that the postoperative facial changes should be taken into account in the surgical design.
Objective To detect the value of three-dimensional (3D) ultrasound diagnosis in common ocular fundus diseases. Methods Two-dimensional (2D) images of 38 patients with common ocular fundus diseases were three-dimensionally reconstructed via 3D ultrasound workstation. The 3D images reflecting the ocular diseases were analyzed. Result In 38 patients with common ocular fundus diseases, there was vitreous hemorrhage in 16 patients, retinal detachment in 12, choroidal detachment in 5, and intraocular space occupying lesion in 5. Compared with the 2D images, 3D reconstructed images reflect the lesions more intuitionistically, displayed the relationship between the lesions and the peripheral tissues more clearly, and revealed the blood flow more specifically. During a scanning examination, 3D reconstructed technology provided the diagnostic information of section of X, Y and Z axises simultaneously which shortened the time of examination; the condition of any point of lesions and the relation between the lesion and the peripheral tissues could be gotten by the tools like cut and chop provided by 3D imaging software itself, which avoided detecting the same lesion with different angles and lays and proved the diagnostic efficacy. Conclusions 3D ultrasound diagnosis is better than 2D in diagnosis of vitreous, retina, choroid, and intraocular space occupying lesion. 3D ultrasound diagnosis is a complementarity for the 2D one, and the Z axis changes the former observational angles which may provide the new way of precise diagnosis. (Chin J Ocul Fundus Dis, 2005, 21: 381-383)
Objective To explore the effect of NaOH on the surface morphology of three-dimensional (3D) printed poly-L-lactic acid (PLLA) mesh scaffolds. Methods The 3D printed PLLA mesh scaffolds were prepared by fused deposition molding technology, then the scaffold surfaces were etched with the NaOH solution. The concentrations of NaOH solution were 0.01, 0.1, 0.5, 1.0, and 3.0 mol/L, and the treatment time was 1, 3, 6, 9, and 12 hours, respectively. There were a total of 25 concentration and time combinations. After treatment, the microstructure, energy spectrum, roughness, hydrophilicity, compressive strength, as well as cell adhesion and proliferation of the scaffolds were observed. The untreated scaffolds were used as a normal control. Results 3D printed PLLA mesh scaffolds were successfully prepared by using fused deposition molding technology. After NaOH etching treatment, a rough or micro porous structure was constructed on the surface of the scaffold, and with the increase of NaOH concentration and treatment time, the size and density of the pores increased. The characterization of the scaffolds by energy dispersive spectroscopy showed that the crystal contains two elements, Na and O. The surface roughness of NaOH treated scaffolds significantly increased (P<0.05) and the contact angle significantly decreased (P<0.05) compared to untreated scaffolds. There was no significant difference in compressive strength between the untreated scaffolds and treated scaffolds under conditions of 0.1 mol/L/12 h and 1.0 mol/L/3 h (P>0.05), while the compression strength of the other treated scaffolds were significantly lower than that of the untreated scaffolds (P<0.05). After co-culturing the cells with the scaffold, NaOH treatment resulted in an increase in the number of cells on the surface of the scaffold and the spreading area of individual cells, and more synapses extending from adherent cells. Conclusion NaOH treatment is beneficial for increasing the surface hydrophilicity and cell adhesion of 3D printed PLLA mesh scaffolds.
ObjectiveTo review research progress on the design, manufacturing, and clinical application of three-dimensional (3D) printed customized prosthesis in acetabular reconstruction of hip revision surgery. MethodsThe related research literature on 3D printed customized prosthesis and its application in acetabular reconstruction of hip revision surgery was searched by key words of “3D printed customized prosthesis”, “revision hip arthroplasty”, “acetabular bone defect”, and “acetabular reconstruction” between January 2013 and May 2024 in Chinese and English databases, such as CNKI, Wanfang database, PubMed, etc. A total of 34 271 articles were included. After reading the literature titles, abstracts, or full texts, the literature of unrelated, repetitive, low-quality, and low evidence level was screened out, and a total of 48 articles were finally included for analysis and summary. ResultsThe bone growth and mechanical properties of 3D printed customized prosthesis materials are better than those of non-3D printed customized prosthesis, which further solves the problem of elastic modulus mismatch between the implant and natural bone caused by “stress shielding”; the porous structure and antibacterial coating on the surface of 3D printed customized prosthesis have good anti-bacterial effect. 3D printed customized prosthesis can perfectly match the patient’s individual acetabular anatomical characteristics and defect type, thus improving the accuracy of acetabular reconstruction and reducing the surgical time and trauma. Conclusion3D printed customized prosthesis can be used for precise and efficient individualized acetabular reconstruction in hip revision surgery with good early- and mid-term effectiveness. More optimized production technics and procedures need to be developed to improve the efficiency of clinical application and long-term effectiveness.
Objective To investigate the clinical application and effectiveness of three-dimensional (3D) printed customized prosthesis with preserved epiphysis and articular surface in the reconstruction of large bone defects in treatment of adolescent femoral malignant tumors. Methods The clinical data of 10 adolescent patients with femoral primary malignant tumor who met the selection criteria and underwent limb salvage surgery with 3D printed customized prosthesis with preserved epiphysis and articular surface between January 2020 and October 2021 were retrospectively analyzed. There were 6 males and 4 females with an average age of 12.5 years ranging from 7 to 18 years. There were 8 cases of osteosarcoma and 2 cases of Ewing’s sarcoma. Enneking stage was Ⅱb. The length of the lesions ranged from 76 to 240 mm, with an average of 138.0 mm. The length of osteotomy (i. e. length of customized prosthesis) ranged from 130 to 275 mm, with an average of 198.5 mm; the distance between distal osteotomy end and epiphyseal line ranged from 0 to 15 mm, with an average of 8.8 mm; the bone defect after osteotomy accounted for 37.36% to 79.02% of the total length of the lesion bone, with a mean of 49.43%. The operation time, intraoperative blood loss, complications, tumor outcome (refered to RESIST1.1 solid tumor efficacy evaluation criteria), and limb length discrepancy were recorded. The Musculoskeletal Cancer Society (MSTS) 93 score was used to evaluate the function at 6 months after operation, and visual analogue scale (VAS) score was used to evaluate the pain before and after operation. Results The operation was successfully performed in all the 10 patients, and the postoperative pathological results were consistent with the preoperative pathological results. The operation time was 165-440 minutes, with an average of 263 minutes; and the intraoperative blood loss was 100-800 mL, with an average of 350 mL. All patients were followed up 7-26 months, with an average of 11.8 months. No tumor was found on the osteotomy surface; the customized prosthesis were firmly installed and closely matched with the retained articular surface. The tumor outcome of neoadjuvant chemotherapy was stable in 4 cases and partial remission in 6 cases. No local recurrence or distant metastasis was found in 9 cases after postoperative adjuvant chemotherapy; pulmonary metastasis was found in 1 case at 12 months after operation. Two patients had local incision fat liquefaction, superficial infection, and delayed healing at 14 days after operation; 1 patient had local bone absorption at the contact surface of the prosthesis, and the screw and prosthesis did not loosen at 7 months after operation; the other patients had good incision healing, with no infection, prosthesis loosening, fracture, or other complications. At 6 months after operation, the MSTS93 score was 19-28, with an average of 24.1; 8 cases were excellent and 2 cases were good. The VAS score was 0.9±1.0, which significantly improved when compared with before operation (5.9±1.0) (t=23.717, P<0.001). The height of the patients increased by 1-12 cm, with an average of 4.6 cm. At last follow-up, 4 patients had limb length discrepancy, with a length difference of 1 cm in 2 cases and 2 cm in 2 cases. Conclusion The application of 3D printed customized prosthesis in the resection and reconstruction of adolescents femoral primary malignant tumors can achieve the purpose of preserving epiphysis and articular surface, and obtain good effectiveness.
Objective To investigate the feasibility and application value of digital technology in establishing the micro-vessels model of cross-boundary perforator flap in rat. Methods Twenty 8-week-old female Sprague Dawley rats, weighing 280-300 g, were used to established micro-vessels model. The cross-boundary perforator flaps of 10 cm×3 cm in size were prepared at the dorsum of 20 rats; then the flaps were suturedin situ. Ten rats were randomly picked up at 3 and 7 days after operation in order to observe the necrosis of flap and measure the percentage of flap necrosis area; the lead-oxide gelatin solution was used for vessels perfusion; flaps were harvested and three-dimensional reconstruction of micro-vessel was performed after micro-CT scanning. Vascular volume and total length were measured via Matlable 7.0 software. Results The percentage of flap necrosis area at 3 days after operation was 19.08%±3.64%, which was significantly lower than that at 7 days (39.76%±3.76%;t=10.361, P=0.029). Three-dimensional reconstruction via the micro-CT clearly showed the morphological alteration of micro-vessel of the flap. At 3 days after operation, the vascular volume of the flap was (1 240.23±89.71) mm3 and the total length was (245.94±29.38) mm. At 7 days after operation, the vascular volume of the flap was (1 036.96±88.97) mm3 and the total length was (143.20±30.28) mm. There were significant differences in the vascular volume and the total length between different time points (t=5.088, P=0.000; t=7.701, P=0.000). Conclusion The digital technology can be applied to visually observe and objectively evaluate the morphological alteration of the micro-vessels of the flap, and provide technical support for the study of vascular model of flap.