Objective To investigate the accuracy of 18F-FDG positron emission tomography/computed tomography (PET/CT) combined with CT three-dimensional reconstruction (CT-3D) in the differential diagnosis of benign and malignant pulmonary nodules. Methods The clinical data of patients who underwent pulmonary nodule surgery in the Department of Thoracic Surgery, Northern Jiangsu People's Hospital from July 2020 to August 2021 were retrospectively analyzed. The preoperative 18F-FDG PET/CT and chest enhanced CT-3D and other imaging data were extracted. The parameters with diagnostic significance were screened by the area under the receiver operating characteristic (ROC) curve (AUC). Three prediction models, including PET/CT prediction model (MOD PET), CT-3D prediction model (MOD CT-3D), and PET/CT combined CT-3D prediction model (MOD combination), were established through binary logistic regression, and the diagnostic performance of the models were validated by ROC curve. Results A total of 125 patients were enrolled, including 57 males and 68 females, with an average age of 61.16±8.57 years. There were 46 patients with benign nodules, and 79 patients with malignant nodules. A total of 2 PET/CT parameters and 5 CT-3D parameters were extracted. Two PET/CT parameters, SUVmax≥1.5 (AUC=0.688) and abnormal uptake of hilar/mediastinal lymph node metabolism (AUC=0.671), were included in the regression model. Among the CT-3D parameters, CT value histogram peaks (AUC=0.694) and CT-3D morphology (AUC=0.652) were included in the regression model. Finally, the AUC of the MOD PET was verified to be 0.738 [95%CI (0.651, 0.824)], the sensitivity was 74.7%, and the specificity was 60.9%; the AUC of the MOD CT-3D was 0.762 [95%CI (0.677, 0.848)], the sensitivity was 51.9%, and the specificity was 87.0%; the AUC of the MOD combination was 0.857 [95%CI (0.789, 0.925)], the sensitivity was 77.2%, the specificity was 82.6%, and the differences were statistically significant (P<0.001). Conclusion 18F-FDG PET/CT combined with CT-3D can improve the diagnostic performance of pulmonary nodules, and its specificity and sensitivity are better than those of single imaging diagnosis method. The combined prediction model is of great significance for the selection of surgical timing and surgical methods for pulmonary nodules, and provides a theoretical basis for the application of artificial intelligence in the pulmonary nodule diagnosis.
Objective To study the hook of hamate bone by anatomy and iconography methods in order to provide information for the cl inical treatment of injuries to the hook of hamate bone and the deep branch of ulnar nerve. Methods Fifty-two upper l imb specimens of adult corpses contributed voluntarily were collected, including 40 antisepticized old specimens and 12 fresh ones. The hook of hamate bone and its adjacent structure were observed. Twentyfour upper l imbs selected randomly from specimens of corpses and 24 upper l imbs from 12 healthy adults were investigated by computed tomography (CT) three-dimensional reconstruction, and then related data were measured. The measurement results of24 specimens were analyzed statistically. Results The hook of hamate bone is an important component of ulnar carpal canal and carpal canal, and the deep branch of ulnar nerve is located closely in the inner front of the hook of hamate bone. The flexor tendons of the forth and the l ittle fingers are in the innermost side, closely l ie next to the outside of the hook of hamate bone. The hamate bone located between the capitate bone and the three-cornered bone with wedge-shaped. The medial-, lateral-, and front-sides are all facies articularis. The hook of hamate bone has an approximate shape of a flat plate. The position migrated from the body of the hamate bone, the middle of the hook and the enlargement of the top of the hook were given the names of “the basis of the hook”, “the waist of the hook”, and “the coronal of the hook”, respectively. The short path of the basement are all longer than the short path of the waist. The long path of the top of the hook is the maximum length diameter of the hook of hamate bone, and is longer than the long path of the basement and the long path of the waist. The iconography shape and trait of the hook of hamate bone is similar to the anatomy result. There were no statistically significant differences (P gt; 0.05) between two methods in the seven parameters as follows: the long path of the basement of the hook, the short path of the basement of the hook, the long path of the waist of thehook, the short path of the waist of the hook, the long path of the top of the hook, the height of the hook, of hamate bone, and the distance between the top and the waist of the hook. Conclusion The hook of hamate bone can be divided into three parts: the coronal part, the waist part, and the basal part; fracture of the hamate bone can be divided into fracture of the body, fracture of the hook, and fracture of the body and the hook. Facture of the hook of hamate bone or fracture unnion can easily result in injure of the deep branch of ulnar nerve and the flexor tendons of the forth and the l ittle fingers. The measurement results of CT threedimensional reconstruction can be used as reference value directly in cl inical treatments.
ObjectiveTo evaluate the value of individualized preoperative simulation in transjugular intrahepatic portosystemic shunt (TIPS).MethodsThin slice scan data of 39 patients with supine upper abdomen were obtained, three dimensional structures of bone, liver, portal vein, inferior vena cava and hepatic vein in CT scan area were reconstructed in Mimics software. According to the size of interventional instruments, a virtual RUPS-100 puncture kit and an VIATORR stent were established in 3D MAX software. Computer simulations were performed to evaluate the route from the hepatic vein puncture portal vein and stent release position. The coincidence of simulation parameters with actual surgical results was compared.Results① The time of preoperative simulation was controllable. The total simulation time was 70–110 minutes (after summing up the previous experience). Preoperative simulation in daily work would not affect the progress of treatment. ② There were 4 cases of puncturing bifurcation of portal vein, 22 cases of puncturing left branch and 13 cases of puncturing right branch during operation (24 cases of puncturing left branch and 15 cases of puncturing right branch by preoperative simulation plan). The overall coincidence rate was 89.7% (35/39). ③ Preoperative simulations were performed using 8 mm×6 cm/2 cm size VIATORR stents, and the stents used in the actual operation were the same as the simulation results. ④ Preoperative simulation and post-operative retrospective simulation could shortened the teaching and training time and enhanced the understanding of surgical intention and key steps.ConclusionPreoperative simulation based on patient's individualized three-dimensional model and virtual interventional device could guided the actual operation of TIPS more accurately, and had practical value for improving the success rate of operation and training young doctors.
ObjectiveTo investigate the correlation between glenohumeral joint congruence and stability in recurrent shoulder dislocations. Methods Eighty-nine patients (89 sides) with recurrent shoulder dislocation admitted between June 2022 and June 2023 and met the selection criteria were included as study subjects. There were 36 males and 53 females with an average age of 44 years (range, 20-79 years). There were 40 cases of left shoulder and 49 cases of right shoulder. The shoulder joints dislocated 2-6 times, with an average of 3 times. The three-dimensional models of the humeral head and scapular glenoid were reconstructed using Mimics 20.0 software based on CT scanning images. The glenoid track (GT), inclusion index, chimerism index, fit index, and Hill-Sachs interval (HSI) were measured, and the degree of on/off track was judged (K value, the difference between HSI and GT). Multiple linear regression was used to analyze the correlation between the degree of on/off track (K value) and inclusion index, chimerism index, and fit index. ResultsMultiple linear regression analysis showed that the K value had no correlation with the inclusion index (P>0.05), and was positively correlated with the chimerism index and the fit index (P<0.05). Regression equation was K=–24.898+35.982×inclusion index+8.280×fit index, R2=0.084. ConclusionHumeral head and scapular glenoid bony area and curvature are associated with shoulder joint stability in recurrent shoulder dislocations. Increased humeral head bony area, decreased scapular glenoid bony area, increased humeral head curvature, and decreased scapular glenoid curvature are risk factors for glenohumeral joint stability.
In order to accurately implant the brain electrodes of carp robot for positioning and navigation, the three-dimensional model of brain structure and brain electrodes is to be proposed in the study. In this study, the tungsten electrodes were implanted into the cerebellum of a carp with the aid of brain stereotaxic instrument. The brain motor areas were found and their three-dimensional coordinate values were obtained by the aquatic electricity stimulation experiments and the underwater control experiments. The carp brain and the brain electrodes were imaged by 3.0 T magnetic resonance imaging instrument, and the three-dimensional reconstruction of carp brain and brain electrodes was carried out by the 3D-DOCTOR software and the Mimics software. The results showed that the brain motor areas and their coordinate values were accurate. The relative spatial position relationships between brain electrodes and brain tissue, brain tissue and skull surface could be observed by the three-dimensional reconstruction map of brain tissue and brain electrodes which reconstructed the three-dimensional structure of brain. The anatomical position of the three-dimensional reconstructed brain tissue in magnetic resonance image and the relationship between brain tissue and skull surface could be observed through the three-dimensional reconstruction comprehensive display map of brain tissue. The three-dimensional reconstruction model in this study can provide a navigation tool for brain electrodes implantation.
Integrating visualization toolkit and the capability of interaction, bidirectional communication and graphics rendering which provided by HTML5, we explored and experimented on the feasibility of remote medical image reconstruction and interaction in pure Web. We prompted server-centric method which did not need to download the big medical data to local connections and avoided considering network transmission pressure and the three-dimensional (3D) rendering capability of client hardware. The method integrated remote medical image reconstruction and interaction into Web seamlessly, which was applicable to lower-end computers and mobile devices. Finally, we tested this method in the Internet and achieved real-time effects. This Web-based 3D reconstruction and interaction method, which crosses over internet terminals and performance limited devices, may be useful for remote medical assistant.
Objective To analyze the characteristics of femoral neck fractures in young and middle-aged adults by means of medical image analysis and fracture mapping technology to provide reference for fracture treatment. Methods A clinical data of 159 young and middle-aged patients with femoral neck fractures who were admitted between December 2018 and July 2019 was analyzed. Among them, 99 patients were male and 60 were female. The age ranged from 18 to 60 years, with an average age of 47.9 years. There were 77 cases of left femoral neck fractures and 82 cases of right sides. Based on preoperative X-ray film and CT, the fracture morphology was observed and classified according to the Garden classification standard and Pauwels’ angle, respectively. Mimics19.0 software was used to reconstruct the three-dimensional models of femoral neck fracture, measure the angle between the fracture plane and the sagittal plane of the human body, and observe whether there was any defect at the fracture end and its position on the fracture surface. Through reconstruction, virtual reduction, and image overlay, the fracture map was established to observe the fracture line and distribution. Results According to Garden classification standard, there were 6 cases of type Ⅰ, 61 cases of type Ⅱ, 54 cases of type Ⅲ, and 38 cases of type Ⅳ. According to the Pauwels’ angle, there were 12 cases of abduction type, 78 cases of intermediate type, and 69 cases of adduction type. The angle between fracture plane and sagittal plane of the human body ranged from –39° to +30°. Most of them were Garden type Ⅱ, Ⅳ and Pauwels intermediate type. The fracture blocks were mainly in the form of a triangle with a long base and mainly distributed below the femoral head and neck junction area. Twenty-six cases (16.35%) were complicated with bone defects, which were mostly found in Garden type Ⅲ, Ⅳ, and Pauwels intermediate type, located at the back of femoral neck and mostly involved 2-4 quadrants. The fracture map showed that the fracture line of the femoral neck was distributed annularly along the femoral head and neck junction. The fracture line was dense above the femoral neck and scattered below, involving the femoral calcar. Conclusion The proportion of displaced fractures (Garden type Ⅲ, Ⅳ) and unstable fractures (Pauwels intermediate type, adduction type) is high in femoral neck fractures in young and middle-aged adults, and comminuted fractures and bone defects further increase the difficulty of treatment. In clinical practice, it is necessary to choose treatment plan according to fracture characteristics. Anatomic reduction and effective fixation are the primary principles for the treatment of femoral neck fracture in young and middle-aged adults.
ObjectiveTo establish a model of three-dimensional (3-D) cephalometric analysis to study dentomaxillofacial deformities. MethodsBetween January 2012 and October 2013,15 patients with dentomaxillofacial deformities were treated using 3-D cephalometric analysis in orthognathic surgery plan.There were 7 males and 8 females with an average age of 23.6 years (range,17-37 years),including 4 cases of mandibular protrusion with maxillary deficiency,4 cases of maxillary protrusion with mandibular deficiency,2 cases of long face syndrome,and 5 cases of facial asymmetry.CT images were reconstructed by Mimics software.The anatomical landmarks were located,the reference planes and analysis planes were defined and the 3-D coordinate was established.The distance and degree between landmarks and analysis planes which defined in the measure project were measured. ResultsBased on the 3-D CT quantitative analysis methods,cephalometric analysis project was defined in the 3-D coordinate.3-D cephalometric analysis provided a convenient and precise method for the clinical measurement of dentomaxillofacial morphology,and reduce the time in preoperation analysis. ConclusionThe model of 3-D CT cephalometric analysis can provide precise information in the diagnosis and treatment planning of orthognathic surgery.
Objective To study the imaging features of the hip joint by measuring the imaging parameters of spine, pelvis, and hip joint before and after total hip arthroplasty (THA) in patients with ankylosing spondylitis (AS) undergoing THA so as to provide reference for selection of operation methods and prosthesis. Methods Between January and July 2015, 38 patients (56 hips) with AS underwent primary THA as AS group, and 36 patients (45 hips) with osteonecrosis of the femoral head underwent THA as control group. There was no significant difference in side (χ2=1.14,P=0.95). The acetabular abduction angle (ABA), acetabular anteversion angle (AVA), center collum diaphyseal (CCD), offset, height from rotation center to lesser trochanter (HRCLT), femoral intertrochanteric distance (FID) were measured by CT three-dimensional morphology. The canal flare index (CFI), cortical thickness index (CTI), pelvic incidence (PI), sacral slope (SS), and pelvic tilt (PT) were measured by X-ray film before operation. The AVA, ABA, and the filling ratio were measured on the postoperative X-ray film. Results There was no significant difference in preoperative AVA and ABA and postoperative ABA between 2 groups (P>0.05), but significant difference was found in postoperative AVA (t=6.71,P=0.00). The mean PI, SS, and PT in AS group were 48.37° (range, 41-58°), 5.64°(range, 2-11°), and 12.85° (range, 5-26°), respectively. There was significant difference in CCD, CFI, and CTI between 2 groups (t=3.63,P=0.04;t=5.12,P=0.02;t=3.91,P=0.04), but offset, HRCLT, and FID all showed no significant difference (t=0.41,P=0.36;t=0.33,P=0.56;t=0.59,P=0.12). On the basis of the Noble classification, medullary cavity of the femur was rated as chimney type, ordinary type, and champagne flute type in 32, 18, and 6 hips of AS group, and in 4, 28, and 13 hips of control group respectively. Filling ratio of distal segment in AS group was significantly lower than that in control group (t=5.64,P=0.02), but there was no significant difference in the filling ratio of middle and proximal segments between 2 groups (t=0.29,P=0.61;t=0.55,P=0.13). Conclusion Compared with patients having osteonecrosis of the femeral head, there is no significant difference in preoperative AVA and ABA, but postoperative AVA significantly increase in patients with AS. Because AS patients have mainly chimney type medullary cavity of the femur, the filling ratio of middle and distal segment is lower when tapered stems are used, and the filling ratio of anatomic stems is higher.
ObjectiveTo investigate the clinical effect of 3D computed tomography bronchial bronchography and angiography (3D-CTBA) and guidance of thoracoscopic anatomic pulmonary segmentectomy by Mimics software system. MethodsA retrospective analysis was performed on patients who underwent thoracoscopic segmentectomy in the Department of Thoracic Surgery of Affiliated People's Hospital of Jiangsu University from June 2020 to December 2022. The patients who underwent preoperative 3D-CTBA using Materiaise's interactive medical image control system (Mimics) were selected as an observation group, and the patients who did not receive 3D-CTBA were selected as a control group. The relevant clinical indicators were compared between the two groups. ResultsA total of 59 patients were included, including 29 males and 30 females, aged 25-79 years. There were 37 patients in the observation group, and 22 patients in the control group. The operation time (163.0±48.7 min vs. 188.8±43.0 min, P=0.044), intraoperative blood loss [10.0 (10.0, 20.0) mL vs. 20.0 (20.0, 35.0) mL, P<0.001], and preoperative puncture localization rate (5.4% vs. 31.8%, P=0.019) in the observation group were better than those in the control group. There was no statistically significant difference in the thoracic tube placement time, thoracic fluid drainage volume, number of intraoperative closure nail bin, postoperative hospital stay, or postoperative air leakage incidence (P>0.05) between the two groups. ConclusionFor patients who need to undergo anatomical pulmonary segmentectomy, using Mimics software to produce 3D-CTBA before surgery can help accurately identify pulmonary arteriovenous anatomy, reduce surgical time and intraoperative blood loss, help to determine the location of nodules and reduce invasive localization before surgery, and alleviate patients' pain, which is worthy of clinical promotion.