west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "tissue engineering" 198 results
  • Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema

    ObjectiveTo summarize the progress of the roles and mechanisms of various types of stem cell-based treatments and their combination therapies in both animal studies and clinical trials of lymphedema. MethodsThe literature on stem cell-based treatments for lymphedema in recent years at home and abroad was extensively reviewed, and the animal studies and clinical trials on different types of stem cells for lymphedema were summarized.ResultsVarious types of stem cells have shown certain effects in animal studies and clinical trials on the treatment of lymphedema, mainly through local differentiation into lymphoid endothelial cells and paracrine cytokines with different functions. Current research focuses on two cell types, adipose derived stem cells and bone marrow mesenchymal stem cells, both of which have their own advantages and disadvantages, mainly reflected in the therapeutic effect of stem cells, the difficulty of obtaining stem cells and the content in vivo. In addition, stem cells can also play a synergistic role in combination with other treatments, such as conservative treatment, surgical intervention, cytokines, biological scaffolds, and so on. However, it is still limited to the basic research stage, and only a small number of studies have completed clinical trials. ConclusionStem cells have great transformation potential in the treatment of lymphedema, but there is no unified standard in the selection of cell types, the amount of transplanted cells, and the timing of transplantation.

    Release date:2024-01-12 10:19 Export PDF Favorites Scan
  • RESEARCHON CELL AFFINITY OF POLY-L-LACTIDE/PORCINE-DERIVED XENOGENEIC BONE COMPOSITE IN VITRO

    Objective To evaluate the feasibility of poly-L-lactide(PLLA)/porcinederived xenogeneic bone(PDXB) composite as a scaffold for the bone tissue engineering. Methods The film and the scaffold of the PLLA-PDXB composite were respectively prepared by a solution casting method and a solution casting-particle leaching method. The composite film and scaffold were further treated by the surface alkaline hydrolysis. The surface morphology of the composite was observed by the scanning electron microscopy, and hydrophilicity degree of the composite was measured. The OCT-1 osteoblastlike cells were cultured and amplified in vitro as the seeding cells, which werethen implanted on the film and scaffold. The adherence rate, adherence shape,proliferating activity, and growing morphology of the OCT-1 osteoblastlikecells were observed on the film. Results The PDXB particle 50 μm in diameter on average had a similar phase structure to that of hydroxyapatite. But its Ca/P ratio was lower than that of hydroxyapatite. After the surface alkaline hydrolysis, the PDXB particle could be exposed on the surface of the PLLA-PDXB composite. The surface roughness and hydrophilicity of the PLLAPDXB composite were obviously enhanced. The cell adherence rate and the cell proliferation activity of the PLLAPDXB composite were higher than those of the pure PLLA material. The cells tended to grow on the exposed surface of the PDXB particles. The cells seeded on the composite scaffold could migrate to the inside of the composite scaffold and grew well. Conclusion The PLLA-PDXB composite has a good cell affinity, and this kind of composite can hopefullybecome a new scaffold material to be used in the bone tissue engineering.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts

    ObjectiveTo investigate the formation of nanostructure on cuttlefish bone transformed hydroxyapatite (CB-HA) porous ceramics and the effects of different nanostructures on the osteoblasts adhesion, proliferation, and alkaline phosphatase (ALP) expression.MethodsThe cuttlefish bone was shaped as plate with diameter of 10 mm and thickness of 2 mm, filled with water, and divided into 4 groups. The CB-HA in groups 1-4 were mixed with different phosphorous solutions and then placed in an oven at 120℃ for 24 hours. In addition, the samples in group 4 were further sintered at 1 200℃ for 3 hours to remove nanostructure as controls. The chemical composition of CB-HA were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectrum, and inductively coupled plasma (ICP). The physical structure was analyzed using scanning electron microscopy, specific surface tester, and porosity tester. The MC3T3-E1 cells of 4th generation were co-cultured with 4 groups of CB-HA. After 1 day, the morphology of the cells was observed under scanning electron microscopy. After 1, 3, and 7 days, the cell proliferation was analyzed by MTT assay. After 7 and 14 days, the ALP expression was measured by pNPP method.ResultsX-ray diffraction spectrum showed that the four nanostructures of CB-HA were made of hydroxyapatite. The infrared absorption spectrum showed that the infrared absorption peak of CB-HA was consistent with hydroxyapatite. ICP showed that the ratio of calcium to phosphorus of all CB-HA was 1.68-1.76, which was consistent with hydroxyapatite. Scanning electron microscopy observation showed that the nanostructure on the surface of CB-HA in groups 1-3 were large, medium, and small cluster-like structures, respectively, and CB-HA in group 4 had no obvious nanostructure. There were significant differences in the specific surface areas between groups (P<0.05). There was no significant difference in the porosity between groups (P>0.05). Compared with group 4, groups 1-3 have more pores with pore size less than 50 nm. After co-cultured with osteoblasts, scanning electron microscopy observation and MTT assay showed that the cells in groups 2 and 3 adhered and proliferated better and had more ALP expression than that in groups 1 and 4 (P<0.05).ConclusionThe size of cluster-like nanostructure on the surface of CB-HA can be controlled by adjusting the concentration of ammonium ions in the phosphorous solution, and the introduction of small-sized cluster-like nanostructure on the surface of CB-HA can significantly improve the cell adhesion, proliferation, and ALP expression of the material which might be resulted from the enlarged surface area.

    Release date:2019-03-11 10:22 Export PDF Favorites Scan
  • Research Progress of Human Amniotic Membrane Applications

    Application research on human amniotic membrane has been carried out for nearly a hundred years and people found that there were more than dozens of kinds bioactive substances in the amniotic membrane. It has been proved that the amniotic membrane has a lot of functions, such as anti-inflammatory, anti-bacterial, anti-virus, anti-angiogenic and promoting cell apoptosis, and so on. As effective treatments, amniotic membrane has been used for adjunctive therapy of burns, trauma, ophthalmic damage, dermatopathya. Recent advances of amniotic membrane and amniotic membrane-derived cells research have led to enormous progress in skin tissue engineering, vascular tissue engineering, biological scaffold material, and biological sustained-release materials. Amniotic membrane and amniotic membrane derived cells have a significant advantage and unique charm in medical field. Therefore, they have higher research value and broad prospects in the applications.

    Release date: Export PDF Favorites Scan
  • PRELIMINARY STUDY ON POLYVINYL ALCOHOL / WILD ANTHERAEA PERNYI SILK FIBROIN AS NANOFIBER SCAFFOLDS FOR TISSUE ENGINEERED TENDON

    Objective To investigate the cellular compatibil ity of polyvinyl alcohol (PVA)/wild antheraea pernyisilk fibroin (WSF), and to explore the feasibil ity for tendon tissue engineering scaffold in vitro. Methods The solutions of WSF (11%), PVA (11%), and PVA/WSF (11%) were prepared with 98% formic acid (mass fraction) at a mass ratio of 9 : 1. The electrospinning membranes of WSF, PVA, and PVA/WSF were prepared by electrostatic spinning apparatus. The morphologies of scaffolds were evaluated using scanning electronic microscope (SEM). The tendon cells were isolated from tail tendon of 3-dayold Sprague Dawley rats in vitro. The experiment was performed using the 3rd generation cells. The tendon cells (1 × 106/mL) were cocultured with PVA and PVA/WSF electrospinning film, respectively, and MTT test was used to assess the cell adhesion rate 4, 12 hours after coculture. The tendon cells were cultured in PVA and PVA/WSF extraction medium of different concentration (1, 1/2, and 1/4), respectively; and the absorbance (A) values were detected at 1, 3, 5, and 7 days to evaluate the cytotoxicity. The composite of tendon cells and the PVA or PVA/WSF scaffold were observed by HE staining at 7 days and characterized by SEM at 1,3, 5, and 7 days. Results The solution of WSF could not be used to electrospin; and the solution of PVA and PVA/WSF could be electrospun. After coculture of tendon and PVA or PVA/WSF electrospinning membranes, the cell adhesion rates were 26.9% ±0.4% and 87.0% ± 1.0%, respectively for 4 hours, showing significant difference (t=100.400, P=0.000); the cell adhesion rates were 35.2% ± 0.6% and 110.0% ± 1.7%, respectively for 12 hours, showing significant difference (t=42.500, P=0.000). The cytotoxicity of PVA/WSF was less significantly than that of PVA (P lt; 0.05) and significant difference was observed between 1/2 PVA and 1/4PVA (P lt; 0.05). HE staining and SEM images showed that the tendon cells could adhere to PVA and PVA/WSF scaffolds, but that the cells grew better in PVA/WSF scaffold than in PVA scaffold in vitro. Conclusion PVA/WSF electrospinning membrane scaffold has good cell compatibility, and it is expected to be an ideal scaffold of tendon tissue engineering.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries

    Objective To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. Methods Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. Results As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. Conclusion Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • APPLICATION OF COLLAGEN COMPOSITE SCAFFOLD IN VASCULAR TISSUE ENGINEERING

    Objective To review the appl ication of collagen and biodegradable polymer composite scaffolds in vascular tissue engineering, and describe the multi-layering vascular scaffolds of collagen-based material in recent years. Methods The l iterature concerning collagen composite scaffold production for scaffold of vascular tissue engineering was extensively reviewed and summarized. Results As one of the structural proteins in natural blood vessel, collagen is widely used in vascular tissue engineering because of good biocompatibil ity, biodegradabil ity, and cell recognition signal. The vascular scaffolds with biological activity and good mechanical properties can be made by collagen-polymer composite materials. In addition, the structure and function of the natural blood vessel can be better simulated by multi-layering vascularscaffolds. Conclusion Collagen-polymer composite material is the hot spot in the research of vascular scaffolds, and multilayering vascular scaffolds have a brill iant future.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • Application and research progress of bioprinting technology in skin tissue engineering

    As the largest barrier organ in the human body, once skin defect occur, it not only affects appearance but also cause clinical problems such as infections. Traditional skin defect repair methods, such as autologous skin transplantation and allogeneic skin transplantation, have shortcomings such as limited donor sources, potential immune rejection, and limited repair effects, and are difficult to meet the individualized treatment needs of complex wounds. Bioprinting technology, as a breakthrough approach in tissue engineering in recent years, can accurately control the spatial distribution of seed cells and biomaterials within scaffolds based on digital models, achieving personalized biomimetic structure of skin tissue. This article aims to summarize the application and research progress of bioprinting technology in skin tissue engineering, providing a theoretical basis for its further clinical application.

    Release date:2025-09-26 04:04 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON BIOCOMPATIBILITY OF VASCULAR TISSUE ENGINEERING SCAFFOLD OF ε-CAPROLACTONE AND L-LACTIDE

    Objective To explore the method of preparing the electrospinning of synthesized triblock copolymers of ε-caprolactone and L-lactide (PCLA) for the biodegradable vascular tissue engineering scaffold and to investigateits biocompatibil ity in vitro. Methods The biodegradable vascular tissue engineering scaffold was made by the electrospinning process of PCLA. A series of biocompatibil ity tests were performed. Cytotoxicity test: the L929 cells were cultured in 96-wellflat-bottomed plates with extraction media of PCLA in the experimental group and with the complete DMEM in control group, and MTT method was used to detect absorbance (A) value (570 nm) every day after culture. Acute general toxicity test: the extraction media and sal ine were injected into the mice’s abdominal cavity of experimental and control groups, respectively, and the toxicity effects on the mice were observed within 72 hours. Hemolysis test: anticoagulated blood of rabbit was added into the extracting solution, sal ine, and distilled water in 3 groups, and MTT method was used to detect A value in 3 groups. Cell attachment test: the L929 cells were seeded on the PCLA material and scanning electron microscope (SEM) observation was performed 4 hours and 3 days after culture. Subcutaneous implantation test: the PCLA material was implanted subcutaneously in rats and the histology observation was performed at 1 and 8 weeks. Results Scaffolds had the characteristics of white color, uniform texture, good elasticity, and tenacity. The SEM showed that the PCLA ultrafine fibers had a smooth surface and proper porosity; the fiber diameter was 1-5 μm and the pore diameter was in the range of 10-30 μm. MTT detection suggested that there was no significant difference in A value among 3 groups every day after culturing (P gt; 0.05). The mice in 2 groups were in good physical condition and had no respiratory depression, paralysis, convulsion, and death. The hemolysis rate was 1.18% and was lower than the normal level (5%). The SEM showed a large number of attached L929 cells were visible on the surface of the PCLA material at 4 hours after implantation and the cells grew well after 3 days. The PCLA material was infiltrated by the inflammatory cells after 1 week. The inflammatory cells reduced significantly and the fiber began abruption after 8 weeks. Conclusion The biodegradable vascular tissue engineering scaffold material made by the electrospinning process of PCLA has good microstructure without cytotoxicity and has good biocompatibil ity. It can be used as an ideal scaffold for vascular tissue engineering.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Recent advances in application of graphene oxide for bone tissue engineering

    Objective To review the recent advances in the application of graphene oxide (GO) for bone tissue engineering. Methods The latest literature at home and abroad on the GO used in the bone regeneration and repair was reviewed, including general properties of GO, degradation performance, biocompatibility, and application in bone tissue engineering. Results GO has an abundance of oxygen-containing functionalities, high surface area, and good biocompatibility. In addition, it can promote stem cell adhesion, proliferation, and differentiation. Moreover, GO has many advantages in the construction of new composite scaffolds and improvement of the performance of traditional scaffolds. Conclusion GO has been a hot topic in the field of bone tissue engineering due to its excellent physical and chemical properties. And many problems still need to be solved.

    Release date:2018-05-02 02:41 Export PDF Favorites Scan
20 pages Previous 1 2 3 ... 20 Next

Format

Content