Repeated transcranial magnetic stimulation (rTMS) is one of the commonly used brain stimulation techniques. In order to investigate the effects of rTMS on the excitability of different types of neurons, this study is conducted to investigate the effects of rTMS on the cognitive function of mice and the excitability of hippocampal glutaminergic neurons and gamma-aminobutyric neurons from the perspective of electrophysiology. In this study, mice were randomly divided into glutaminergic control group, glutaminergic magnetic stimulation group, gamma-aminobutyric acid energy control group, and gamma-aminobutyric acid magnetic stimulation group. The four groups of mice were injected with adeno-associated virus to label two types of neurons and were implanted optical fiber. The stimulation groups received 14 days of stimulation and the control groups received 14 days of pseudo-stimulation. The fluorescence intensity of calcium ions in mice was recorded by optical fiber system. Behavioral experiments were conducted to explore the changes of cognitive function in mice. The patch-clamp system was used to detect the changes of neuronal action potential characteristics. The results showed that rTMS significantly improved the cognitive function of mice, increased the amplitude of calcium fluorescence of glutamergic neurons and gamma-aminobutyric neurons in the hippocampus, and enhanced the action potential related indexes of glutamergic neurons and gamma-aminobutyric neurons. The results suggest that rTMS can improve the cognitive ability of mice by enhancing the excitability of hippocampal glutaminergic neurons and gamma-aminobutyric neurons.
Parkinson’s disease is a neurodegenerative disease that mostly occurs in middle-aged and elderly people. It is characterized by progressive loss of dopaminergic neurons in the substantia nigra and aggregation of Lewy bodies, resulting in a series of motor symptoms and non-motor symptoms. Depression is the most important manifestation of non-motor symptoms, which seriously affects the quality of life of patients. Clinicians often use antidepressant drugs to improve the depressive symptoms of patients with Parkinson 's disease, but it is still urgent to solve the problems of drug side effects and drug resistance caused by such methods. Repetitive transcranial magnetic stimulation is a safe and non-invasive neuromodulation technique that can change the excitability of the corticospinal tract, induce the release of dopamine and other neurotransmitters, and further improve the depressive symptoms of patients with Parkinson 's disease. Based on this, this paper discusses and summarizes the research progress on the efficacy and potential mechanism of repetitive transcranial magnetic stimulation for improving depression in Parkinson 's disease at home and abroad, in order to provide reference for related clinical application research.
Transcranial magnetic stimulation (TMS) combined with electroencephalography(EEG) has become an important tool in brain research. However, it is difficult to remove the large artifacts in EEG signals caused by the online TMS intervention. In this paper, we summed up various types of artifacts. After introducing a variety of online methods, the paper emphasized on offline approaches, such as subtraction, principal component analysis and independent component analysis, which can remove or minimize TMS-induced artifacts according to their different characteristics. Although these approaches can deal with most of the artifacts induced by TMS, the removal of large artifacts still needs to be improved. This paper systematically summarizes the effective methods for artifacts removal in TMS-EEG studies. It is a good reference for TMS-EEG researchers while choosing the suitable artifacts removal methods.
ObjectiveTo systematically review the efficacy of repetitive transcranial magnetic stimulation (rTMS) on patients with mild cognitive impairment (MCI). MethodsWe searched databases including PubMed, The Cochrane Library (Issue 10, 2015), EMbase, PsycINF, EBSCO, CBM, CNKI, WanFang Data and VIP from inception to October 2015 to collect randomized controlled trials (RCTs) about rTMS for patients with MCI. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Then, meta-analysis was performed by using RevMan 5.3 software. ResultsA total of 5 RCTs involving 180 MCI patients were included. The results of meta-analysis showed that, compared with the control group, rTMS treatment could significantly improve the overall cognitive abilities of MCI patients (SMD=2.53, 95% CI 0.91 to 4.16, P=0.002), as well as the single-domain cognitive performances, including tests for episodic memory (MD=0.98, 95% CI 0.24 to 1.72, P=0.01) and verbal fluency (MD=2.08, 95% CI 0.46 to 3.69, P=0.01). rTMS was a well-tolerated therapy, with slightly more adverse events observed than the control group (RD=0.09, 95% CI 0.00 to 0.18, P=0.04), but cases were mainly transient headache, dizziness and scalp pain. ConclusionrTMS may benefit the cognitive abilities of MCI patients. Nevertheless, due to the limited quantity and quality of included studies, large-scale, multicenter, and high quality RCTs are required to verify the conclusion.
Weightlessness in the space environment affects astronauts’ learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.
ObjectiveTo observe the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied at contralesional hemisphere Broca’s homologue on patients with global aphasia after left massive cerebral infarction. Methods Patients with global aphasia after left massive cerebral infarction in the Department of Neurorehabilitation of China Rehabilitation Research Center between August 2021 and December 2023 were selected. According to the random number table method, patients were randomly divided into a low-frequency rTMS group and a high-frequency rTMS group. rTMS targeted the mirror area within the right hemispheric Broca’s area. Patients’ language ability was assessed pre- and post-treatment by the Chinese version of the western aphasia battery (WAB). Results A total of 27 patients were included, with 14 in the low-frequency rTMS group and 13 in the high-frequency rTMS group. Before treatment, there was no statistically significant difference in the WAB test indicators between the two groups of patients (P>0.05). After treatment, WAB scores (spontaneous speech, auditory comprehension, naming, repetition, aphasia quotients) in both groups were significantly improved (P<0.05); compared to the low-frequency rTMS group, the high-frequency rTMS group exhibited significant improvement in spontaneous speech, auditory comprehension, repetition, naming and aphasia quotients (P<0.05). Conclusion The effect of high-frequency rTMS excitation to contralesional hemisphere is better than that of conventional low-frequency rTMS inhibition to contralesional hemisphere in improving the speech function of patients with global aphasia after left massive cerebral infarction.
ObjectiveTo systematically evaluate the effect of repetitive transcranial magnetic stimulation (rTMS) on post-stroke depression (PSD).MethodsWe searched databases including the PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Internet, Wanfang, China Biology Medicine database and VIP database to collect randomized controlled trials comparing the effect of the rTMS group and the control group with the scores of depression scale from January 2013 to April 2018. Patients in the rTMS group received rTMS plus drug therapy or conventional treatment for PSD, and patients in the control group received rTMS sham stimulation or not, but the drug treatment or routine treatment was required. When the quality evaluation and data extraction were carried out by two reviewers independently, the Meta-analysis was performed using RevMan 5.3 software and Stata 14.0 software.ResultsA total of 18 literatures involving 1 376 patients (687 patients in the rTMS group and 689 patients in the control group) with PSD were included in this Meta-analysis. Compared with the control group, the rTMS group could effectively reduce the depression scores of PSD patients [standard mean difference (SMD)=–1.13, 95% confidence interval (CI) (–1.42, –0.84), P<0.000 01], and the effective rate of rTMS was 91.7%; meanwhile, rTMS could promote the scores of the National Institute of Health Stroke Scale and the activities of daily living of patients with PSD [SMD=–1.00, 95%CI (–1.25, –0.75), P<0.000 01;SMD=1.56, 95%CI (0.80, 2.32), P<0.000 01]. The source of heterogeneity was not found according to subgroup analysis and Meta-regression analysis. Additionally, few studies reported adverse reactions after the treatment of rTMS.ConclusionsrTMS has a positive effect on depression, neurological deficits, and decreased ability of daily living in patients with PSD. Due to the quality of the included studies, the conclusions need to be verified further.
Objective To evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating stroke patients with motor dysfunction. Methods The Cochrane Library, MEDLINE, EMbase, CBM, CNKI and WanFang Data were searched from inception to January 2012, and the references of the included studies were also retrieved to collect the randomized controlled trials (RCTs) on rTMS in treating stroke patients with motor dysfunction. Two reviewers independently screened articles according to the inclusion and exclusion criteria, extracted data and evaluated the quality of the included studies. Then meta-analysis was performed using RevMan 5.0.2 software, and evidence quality and recommendation level were assessed using the GRADE system. Results A total of 11 RCTs involving 376 patients were included. The results of meta-analysis (including 3 RCTs, low quality) showed that, compared with the routine rehabilitation treatment, 2 to 4 weeks of rTMS was much beneficial to stroke patients with motor dysfunction, with significant differences (WMD=11.02, 95%CI 2.56 to 19.47). The other 8 studies only adopted descriptive analysis accordingly. Conclusion It is still uncertain of the effectiveness of rTMS in improving motor dysfunction of stroke patients, so rTMS should be applied with caution in clinic.
The aim of this study is to explore the effects of continuous theta-burst transcranial magnetic stimulation (cTBS) on functional brain network in emotion processing. Before and after the intervention of cTBS over left dorsolateral prefrontal cortex (DLPFC) of ten participants who were asked to perform the emotion gender recognition task, we recorded their scalp electroencephalograms (EEG). Then we used the phase synchronization of EEG to measure the connectivity between two nodes. We then calculated the network efficiency to describe the efficiency of information transmission in brain regions. Our research showed that after the intervention of cTBS and the stimulation of the emotion face picture, there was an obvious enhancement in the event-related spectral perturbation after stimuli onset in beta band in 100–300 ms. Under the stimulation of different emotion picture, the values of global phase synchronization for negative and neutral stimuli were enhanced compared to positive ones. And the increased small-worldness was found in emotional processing. In summary, based on the effect of activity change in the left DLPFC on emotion processing brain network, the emotional processing mechanism of brain networks were preliminary explored and it provided the reference for the research of emotion processing brain network in the future.
Transcranial magnetic stimulation (TMS) as a noninvasive neuromodulation technique can improve the impairment of learning and memory caused by diseases, and the regulation of learning and memory depends on synaptic plasticity. TMS can affect plasticity of brain synaptic. This paper reviews the effects of TMS on synaptic plasticity from two aspects of structural and functional plasticity, and further reveals the mechanism of TMS from synaptic vesicles, neurotransmitters, synaptic associated proteins, brain derived neurotrophic factor and related pathways. Finally, it is found that TMS could affect neuronal morphology, glutamate receptor and neurotransmitter, and regulate the expression of synaptic associated proteins through the expression of brain derived neurotrophic factor, thus affecting the learning and memory function. This paper reviews the effects of TMS on learning, memory and plasticity of brain synaptic, which provides a reference for the study of the mechanism of TMS.