west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "vascular endothelial cell" 24 results
  • EXPERIMENTAL STUDY ON RABBIT PERIOSTEAL OSTEOBLASTS AND RENAL VASCULAR ENDOTHELIAL CELLS INDIRECT CO-CULTURE IN VITRO

    OBJECTIVE: To determine an optimal co-culture ratio of the rabbit periosteal osteoblasts (RPOB) and rabbit renal vascular endothelial cells(RRVEC) without direct contact for future study of bone tissue engineering. METHODS: RPOB and RRVEC in the ratios of 1:0(control group), 2:1(group 1), 1:1(group 2) and 1:2(group 3) were co-cultured by six well plates and cell inserts. Four days later, the proliferation of RPOB and RRVEC were examined through cell count. Differentiated cell function was assessed by alkaline phosphatase (ALP) activity assay and 3H proline incorporation assay. RESULTS: When RPOB and RRVEC were indirectly co-cultured, the proliferation of RPOB and 3H proline incorporation was higher in group 1 than in the other experimental groups and control group (P lt; 0.05). ALP activity of RPOB was higher in group 1 than in control group and group 3 (P lt; 0.05), but there was no significant difference between group 1 and group 2 (P gt; 0.05). CONCLUSION: These results suggest that RPOB and RRVEC co-cultured in a ratio of 2:1 is optimal for future study of bone tissue engineering.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
  • SCD40 ligand expression and inflammatory response in acute aortic dissection patients

    Objective To investigate the relationship of cluster of differentiation 40L (CD40L) between inflammatory response mediated by vascular endothelial injury and Stanford A type aortic dissection (STAAD). Methods In this study from August 2016 to February 2017, a total of 215 blood samples from 95 STAAD patients (67 males and 28 females aged 48.33±12.19 years) and 120 healthy volunteers (94 males and 26 females aged 48.64±10.13 years) were collected. The patients with aortic dissection were taken blood 1 hour before the operation and the healthy volunteers were taken blood from the elbow vein. All STAAD patients were diagnozed by computed tomography angiography (CTA) and patients with Marfan syndrome were excluded. Blood samples were tested by enzyme-linked immunosorbent assay (ELISA) for CD40L, vascular cell adhesion molecule (VCAM-1), E-selectin, interleukin-1 (IL-1) beta, IL-6, tumor necrosis factor-alpha (TNF-α) and so on. ResultsCompared with the healthy population, the level of SCD40L(26.87±5.50 ng/ml vs. 13.39±4.03 ng/ml, P<0.001) in the STAAD patients was significantly higher. E-Selectin (116.62±25.24 ng/ml vs. 77.05±14.30 ng/ml, P<0.001), VCAM-1 (P<0.001), TNF-α (55.35±9.12 ng/ml vs. 37.33±5.61 pg/ml, P<0.001), IL-1β (62.12±13.37 ng/ml vs. 48.68±9.86 pg/ml, P<0.001), IL-6 (499.54±90.45 ng/ml vs. 422.44±34.00 pg/ml, P<0.001) significantly increased. Conclusion The increased expression of SCD40L in STAAD patients and the inflammatory reaction induced by endothelial injury in aortic dissection patients are obvious.

    Release date:2019-03-29 01:35 Export PDF Favorites Scan
  • The effect of NDRG1 gene on the angiogenesis ability of retinal endothelial cells in vitro

    ObjectiveTo observe the effects of NDRG1 on proliferation, migration and lumen formation of retinal vascular endothelial cells (RF/6A cells) in monkeys under high glucose condition. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, small interfering RNA (siRNA) negative control group without target gene (siRNA group), 30 nmol/L siRNA down-regulated NDRG1 genome (siNDRG1 group) and 50 nmol/L siNDRG1 group. Normal group cells were cultured conventionally. The mannitol group was added with 25 mmol/L mannitol, and the high-glucose group was added with 25 mmol/L glucose. In the siRNA group, 25 mmol/L glucose was added, and then blank siRNA was added for induction. The 30 and 50 nmol/L siNDRG1 groups were added with 25 mmol/L glucose and induced with 30 and 50 nmol/L siRNDRG1, respectively. All cells were incubated for 24 h for follow-up experiments. Cell proliferation was observed by 4', 6-diaminidine 2-phenylindole staining. Cell counting kit-8 staining was used to detect cell activity. The expression level of NDRG1 mRNA and protein was detected by Western blot and real-time quantitative polymerase chain reaction. Cell migration was observed by cell scratch assay. Cell lumen formation assay was used to detect lumen formation. The two-tailed Student t test was used to compare the two groups. One-way analysis of variance was used to compare groups. ResultsThere were significant differences in cell proliferation rate (t=36.659, 57.645) mobility rate (t=24.745, 33.638) and lumen formation number (t=41.276, 22.867) between high glucose group and normal group and mannitol group (P<0.01). Compared with normal group and mannitol group, the relative expression levels of NDRG1gene mRNA and protein in high glucose group were significantly decreased, with statistical significance (t=46.145, 21.541, 36.738, 32.976; P<0.001). Compared with the siRNA negative group, the relative expression levels of NDRG1gene mRNA and protein in 30 nmol/L siNDRG1 group and 50 nmol/L siNDRG1 group were significantly decreased, and the differences were statistically significant (t=44.275, 40.7577, 57.167, 25.877; P<0.01). Compared with normal group and siRNA group, cell mobility in 30 nmol/LsiNDRG1 group was increased, and the difference was statistically significant (t=57.562, 49.522; P<0.01). Compared with normal group and siRNA group, the number of cell lumen formation in 30 nmol/LsiNDRG1 group was significantly increased in the same field of vision, and the difference was statistically significant (t=63.446, 42.742; P<0.01). ConclusionDown-regulation of NDRG1 gene can improve the activity, migration and lumen formation of RF/6A cells under hyperglycemia.

    Release date:2024-07-16 02:36 Export PDF Favorites Scan
  • Protective effect of polypyrimidine tract-binding protein-associated splicing factor on endoplasmic reticulum oxidative stress injury of human retinal microvascular endothelial cells

    Objective To observe the effects of overexpression of polypyrimidine tract binding protein-associated splicing factor (PSF) on the endoplasmic reticulum (ER) oxidative stress damage of human retinal microvascular endothelial cells (hRMEC) under high concentration of 4-hydroxynonenal (4-HNE). MethodsThe logarithmic growth phase hRMEC cultured in vitro was divided into normal group, simple 4-HNE treatment group (simple 4-HNE group), empty plasmid combined with 4-HNE treatment group (Vec+4-HNE group), and PSF high expression combined with 4-HNE treatment group (PSF+4-HNE group). In 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group cell culture medium, 10 μmol/L 4-HNE was added and stimulated for 12 hours. Subsequently, the Vec+4-HNE group and PSF+4-HNE group were transfected with transfection reagent liposome 2000 into pcDNA empty bodies and pcDNA-PSF eukaryotic expression plasmids, respectively, for 24 hours. Flow cytometry was used to detect the effects of 4-HNE and PSF on cell apoptosis. The effect of PSF overexpression on the expression of reactive oxygen species (ROS) in hRMEC was detected by 2', 7'-dichlorodihydrofluorescein double Acetate probe. Western blot was used to detect ER oxide protein 1 (Ero-1), protein disulfide isomerase (PDI), C/EBP homologous transcription factor (CHOP), glucose regulatory protein (GRP) 78, protein kinase R-like ER kinase (PERK)/phosphorylated PERK (p-PERK), and Eukaryotic initiation factor (eIF) 2α/the relative expression levels of phosphorylated eIF (peIF) and activated transcription factor 4 (ATF4) proteins in hRMEC of normal group, 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group. Single factor analysis of variance was performed for inter group comparison. ResultsThe apoptosis rates of the simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were (22.50±0.58)%, (26.93±0.55)%, and (11.70±0.17)%, respectively. The intracellular ROS expression levels were 0.23±0.03, 1.60±0.06, and 0.50±0.06, respectively. The difference in cell apoptosis rate among the three groups was statistically significant (F=24.531, P<0.05). The expression level of ROS in the Vec+4-HNE group was significantly higher than that in the simple 4-HNE group and the PSF+4-HNE group, with a statistically significant difference (F=37.274, P<0.05). The relative expression levels of ER Ero-1 and PDI proteins in the normal group, simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were 1.25±0.03, 0.45±0.03, 0.63±0.03, 1.13±0.09, and 1.00±0.10, 0.27±0.10, 0.31±0.05, and 0.80±0.06, respectively. The relative expression levels of CHOP and GRP78 proteins were 0.55±0.06, 1.13±0.09, 0.90±0.06, 0.48±0.04 and 0.48±0.04, 1.25±0.03, 1.03±0.09, 0.50±0.06, respectively. The relative expression levels of Ero-1 (F=43.164), PDI (F=36.643), CHOP (F=42.855), and GRP78 (F=45.275) proteins in four groups were compared, and the differences were statistically significant (P<0.05). Four groups of cells ER p-pERK/pERK (F=35.755), peIF2 α/ The relative expression levels of eIF (F=38.643) and ATF4 (F=31.275) proteins were compared, and the differences were statistically significant (P<0.05). ConclusionPSF can inhibit cell apoptosis and ROS production induced by high concentration of 4-HNE, and its mechanism is closely related to restoring the homeostasis of ER and down-regulating the activation level of PERK/eIF2α/ATF4 pathway.

    Release date:2023-09-12 09:11 Export PDF Favorites Scan
  • Effect of NLRP3 gene silencing on expression of proinflammatory agents-induced inflammatory factors in rat brain microvascular endothelial cells

    Objective To study the effect of silencing the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) gene on the production of inflammatory factors induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP) in rat brain microvascular endothelial cells (BMECs), and whether NLRP3 inflammasome signaling pathway plays a role in the BMEC model of cerebral small vessel disease induced by proinflammatory agents. Methods BMECs from male Wistar rats were extracted in vitro and the morphology and purity of endothelial cells were identified. BMECs in normal culture were divided into blank control group and LPS+ATP group. The expression levels of NLRP3 inflammasome and downstream inflammatory factor Caspase-1 were detected by Western blot and real-time polymerase chain reaction, and compared by student’s t test between the two groups. Small interfering RNA (siRNA) was used to silence the specific gene NLRP3 in BMECs. After transfection of siRNA NLRP3 and siRNA plasmid negative control into BMECs, the transfected cells were divided into four groups, namely, siNC group (non silenced target gene), siNLRP3 group (silenced target gene), siNC+LPS+ATP group (non silenced target gene and added proinflammatory agents) and siNLRP3+LPS+ATP group (silenced target gene and added proinflammatory agents). The expression levels of NLRP3 and Caspase-1 were detected by Western blot and real-time polymerase chain reaction, and analyzed by analysis of variance for 2-factor factorial design. Results The microvascular segments of rat BMECs were “beaded” after 24 h of isolation and culture; after 48 h, “island” cell clusters were formed; after 72 h, “paving stone” like monolayer cells adhered to the wall and grew. After that, the cells gradually became dense and reached the convergence degree of 80%. The positive rate of BMECs detected by immunofluorescence staining was 96%. In the normally cultured cells, the protein and mRNA expression levels of NLRP3 and Caspase-1 in the LPS+ATP group were higher than those in the blank control group (P<0.05). In the RNA interference cultured cells, the protein and mRNA expression levels of NLRP3 and Caspase-1 in the siNLRP3 group were lower than those in the siNC group, and those expression levels in the siNLRP3+LPS+ATP group were lower than those in the siNC+LPS+ATP group (P<0.05); the protein and mRNA expression levels of NLRP3 and Caspase-1 in the siNC+LPS+ATP group were higher than those in the siNC group, and those expression levels in the siNLRP3+LPS+ATP group were higher than those in the siNLRP3 group (P<0.05). Plasmid transfection and proinflammatory agents intervention had statistically significant interaction effect on the mRNA expression of NLRP3 and Caspase-1 (P<0.05). Conclusions LPS and ATP can promote the release of NLRP3 and Caspase-1 in BMECs. Silencing NLRP3 gene expression can reduce the induction of proinflammatory agents. NLRP3 inflammasome signaling pathway may play a role in the cerebral small vessel disease cell model of rat BMECs induced by proinflammatory agents.

    Release date:2022-07-28 02:02 Export PDF Favorites Scan
  • Effect of SB431542 on retinal vascular endothelial cells under hypoxia

    Objective To investigate the effect of Nodal protein on retinal neovascularization under hypoxia. MethodsIn vivo animal experiment: 48 healthy C57BL/6J mice were randomly divided into normal group, oxygen-induced retinopathy (OIR) group, OIR+dimethyl sulfoxide (DMSO) group and OIR+SB431542 group, with 12 mice in each group. Retinal neovascularization was observed in mice at 17 days of age by retina flat mount. Counts exceeded the number of vascular endothelial nuclei in the retinal inner boundary membrane (ILM) by hematoxylin eosin staining. In vivo cell experiment: human retinal microvascular endothelial cells (hRMEC) were divided into normal group, hypoxia group, hypoxia+DMSO group and hypoxia +SB431542 group. The cell proliferation was detected by thiazolyl blue colorimetry (MTT). The effect of SB431542 on hRMEC lumen formation was detected by Matrigel three-dimensional in vitro molding method. Cell migration in hRMEC was detected by cell scratch assay. The Seahorse XFe96 Cell Energy Metabolism analyzer measured extracellular acidification rate (ECAR) of intracellular glycolysis, glycolysis reserve, and glycolysis capacity. One-way analysis of variance was used to compare groups. ResultsIn vivo animal experiment: compared with normal group, the neovascularization increased in OIR group (t=41.621, P<0.001). Compared with OIR group, the number of vascular endothelial nuclei breaking through ILM in OIR+SB431542 group was significantly reduced, and the difference was statistically significant (F=36.183, P<0.001). MTT test results showed that compared with normal group and hypoxia+SB431542 group, the cell proliferation of hypoxia group and hypoxia+DMSO group was significantly increased, and the difference was statistically significant (F=39.316, P<0.01). The cell proliferation of hypoxia+SB431542 group was significantly lower than that of hypoxia+DMSO group, and the difference was statistically significant (t=26.182, P<0.001). The number of intact lumen formation and migration cells in normal group, hypoxia group, hypoxia+DMSO group and hypoxia+SB431542 group were statistically significant (F=34.513, 41.862; P<0.001, <0.01). Compared with the hypoxia+DMSO group, the number of intact lumen formation and migrating cells in the hypoxia+SB431542 group decreased significantly, and the differences were statistically significant (t=44.723, 31.178; P<0.001, <0.01). The results of cell energy metabolism showed that compared with the hypoxia +DMSO group, the ECAR of intracellular glycolysis and glycolysis reserve in the hypoxia +SB431542 group was decreased, and the ECAR of glycolysis capacity was increased, with statistical significance (t=26.175, 33.623, 37.276; P<0.05). ConclusionSB431542 can inhibit the proliferation, migration and the ability to form lumens, reduce the level of glycolysis of hRMECs cells induced by hypoxia.

    Release date:2023-12-27 08:53 Export PDF Favorites Scan
  • Effect of microRNA-22-3p on HMGB1/NLRP3 pathway of human lung microvascular endothelial cells

    Objective To investigate the effect of microRNA-22-3p (miR-22-3p) on the inflammation of human pulmonary microvascular endothelial cells (HPMEC) induced by lipopolysaccharide (LPS) by regulating the HMGB1/NLRP3 pathway. Methods miRNA microarray was taken from peripheral blood of patients with acute respiratory distress syndrome (ARDS) caused by abdominal infection and healthy controls for analysis, and the target miRNA was selected. miRNA mimics, inhibitor and their negative controls were transfected in HPMECs which were stimulated with LPS. Real time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the mRNA and protein levels of high mobility group box-1 protein (HMGB1) and nucleotide binding oligomerization segment like receptor family 3 (NLRP3). RT-qPCR and enzyme linked immunosorbent assay were used to detect the levels of inflammatory factors in the cells and supernatant. Results miRNA microarray showed that miR-22-3p was down-regulated in the plasma of patients with ARDS. Compared with the negative control group, after miR-22-3p over-expression, the protein and mRNA levels of HMGB1 and NLRP3 decreased significantly. Similarly, the level of cleaved-caspase-1 decreased significantly. At the same time, interleukin (IL)-6, IL-8 and IL-1β mRNA level in cytoplasm and supernatant were down-regulated by miR-22-3p mimics. After transfected with miR-22-3p inhibitor, the expression levels of HMGB1, NLRP3, caspase-1 protein and inflammatory factors were significantly up-regulated. Conclusion miR-22-3p is significantly downregulated in peripheral blood of ARDS patients caused by abdominal infection, which can inhibit the expression of HMGB1 and NLRP3 and its downstream inflammatory response in HPMECs.

    Release date:2023-04-28 02:38 Export PDF Favorites Scan
  • Interleukin-8 antagonist down regulates the adhesion and migration of retinal vascular endothelial cells by inhibiting the production of reactive oxygen species

    ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.

    Release date:2023-11-16 05:57 Export PDF Favorites Scan
  • Silencing Nodal inhibits the biological behavior of retinal vascular endothelial cells under high glucose conditions

    Objective To observe the effect of Nodal on the biological behavior of retinal vascular endothelial cells (RF/6A cells) in monkeys with high glucose. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, high glucose combined with non-specific small interfering RNA treatment group (HG+NC group), high glucose combined with small interfering Nodal treatment group (HG+siNodal group). The transfection efficiency of siNodal was observed by real-time fluorescence quantitative PCR and western blot protein immunoblotting. The effect of Nodal on the proliferation of RF/6A cells was detected by thiazole blue colorimetry. The effect of Nodal on migration ability of RF/6A cells was detected by cell scratch assay. The effect of Nodal on the formation of RF/6A cell lumen was measured by Matrigel three-dimensional in vitro. The expression of extracellular signal phosphorylated regulated kinase 1/2 (pERK1/2) in RF/6A cells was detected by western blot protein immunoblotting. One-way analysis of variance was used to compare groups. ResultsCompared with HG+NC group, Nodal protein (F=33.469) and mRNA relative expression levels (F=38.191) in HG+siNodal group were significantly decreased, cell proliferation was significantly decreased (F=28.548), and cell migration ability was significantly decreased (F=24.182). The number of cell lumen formation was significantly decreased (F=52.643), and the differences were statistically significant (P<0.05). Compared with HG+NC group, the relative expression of pERK1/2 protein in HG+siNodal group was significantly decreased, and the difference was statistically significant (F=44.462, P<0.01). ConclusionsSilencing Nodal expression can inhibit proliferation, migration and tube formation of RF/6A cells induced by high glucose. It may act by inhibiting pERK1/2 expression.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
  • Advances in Research on Reendothelialization after Intervention in Artery

    Coronary heart disease is a kind of heart disease that is caused by atherosclerosis.The lipid deposition in the vessel wall results in occlusion of coronary artery and stenosis, which could induce myocardial ischemia and oxygen deficiency. Intervention therapies like percutaneous coronary intervention (PCI) and coronary stent improve myocardial perfusion using catheter angioplasty to reduce stenosis and occlusion of coronary artery lumen. Accordingly, intervention therapies are widely applied in clinic to treat ischemic cardiovascular disease, arterial intima hyperplasia and other heart diseases, which could save the patients′ life rapidly and effectively. However, these interventions also damage the original endothelium, promote acute and subacute thrombosis and intimal hyperplasia, and thus induce in stent restenosis (ISR) eventually. Studies indicated that the rapid reendothelialization of damaged section determined postoperative effects. In this review, reendothelialization of implants after intervention therapy is discussed, including the resource of cells contributed on injured artery, the influences of implanted stents on hemodynamic, and the effects of damaged degree on reendothelialization.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content