Vitrectomy and silicone oil injection were performed for treatment of 43 patients with complicated retinal detachment (RD, n=21 ) or subsequent atrophia bulbi (AB, n=22). Retinal reattachment was achieved in 14 (66.7%) of 21 patients with RD, including 11 with idiopathic proliferative vitreoretinopathy (PVR),6 with traumatic PVR, 3 with congenital uveal coloboma or Marfan syndrome. The visual acuity was better than 0.05 in 7(50%) of successful cases,and better than 0.02 in 11 (78.6%).Only 6(27.3%) patients had retina reattached with visual improvement in 22 cases of AB, including 13 of traumatic PVR,8 of idiopathic PVR.However,the intraoccular pressure was stable and shrinkage of the globe was controlled in 21 (95.5%) of 22 patients with AB.The results indicate that silicone off injection following vitrectomy may provide advanced severe PVR with a chance of successful treatment. (Chin J Ocul Fundus Dis,1994,10:4-6)
Pars plana vitrectomy (PPV) combined with intraocular tamponade surgery is one of the main surgical methods for treating retinal detachment. Due to the use of filling substances, patients need to maintain specific postures after the operation to promote retinal reattachment and reduce the occurrence of complications. Currently, during the process of performing postural management for such surgical patients, there are problems such as low compliance and insufficient monitoring and management. Clinical medical staff have actively explored ways to improve the quality of positioning management, but no corresponding norms and consensus have been formed. The standards implemented by different places are closely related to the degree of medical experience. The evaluation of the performance of the patient's position by the medical care mainly relies on the patient's self-report or the nurse's inspection record, which lacks continuity and accuracy. In the future, it is necessary to further promote the development and transformation of auxiliary tools, implement scientific monitoring and management of patients with the help of artificial intelligence, formulate individualized plans and dynamically adjust them according to the patient's condition, and ensure the effect and improve patient satisfaction.
Objective To observe the clinical efficacy of pars plana vitrectomy (PPV) combined with dexamethasone intravitreal implant (DEX) in the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective randomized controlled study. A total of 57 PDR patients with 79 eyes diagnosed by Department of Ophthalmology of The First Affiliated Hospital of Nanjing Medical University from May 2021 to February 2023 were included in the study. Best corrected visual acuity (BCVA) and optical coherence tomography (OCT) were performed in all affected eyes. Central macular thickness (CMT) was measured by OCT. The patients were randomly divided into control group and experimental group, with 27 cases and 35 eyes and 30 cases and 44 eyes, respectively. All eyes were treated with routine 25G PPV and intraoperative whole-retina laser photocoagulation. At the end of the operation, the experimental group was given 0.7 mg DEX intravitreal injection. At 1, 4, 12, and 24 weeks after operation, the same equipment and methods were used for relevant examinations. The improvement after surgery was assessed according to the diabetic retinopathy severity score (DRSS). Mixed analysis of variance was used to compare logarithm of the minimum angle of resolution BCVA and CMT between the two groups and within the two groups before and after operation. ResultsAt 1, 4, 12 and 24 weeks after surgery, BCVA was significantly improved at different time points after surgery, and the differences were statistically significant (P<0.001). At different time after operation, BCVA and CMT in experimental groups were significantly better than that in control group, with statistical significance (P<0.05). Compared with the CMT before surgery, the CMT at all time point after surgery in experimental group were significantly decreased, and the difference were statistically significant (P<0.05). There was no significant difference one week after eye operation in control group (P=0.315). At 4, 12 and 24 weeks after operation, CMT decreased in control group, and the differences were statistically significant (P<0.05). Compared with before surgery, DRSS increased two steps higher at 1, 4, 12 and 24 weeks after surgery in 20 (45.45%, 20/44), 26 (59.10%, 26/44), 32 (72.73%, 32/44) and 31 (70.45%, 31/44) eyes in the experimental groups, respectively. The control group consisted of 15 (42.86%, 15/35), 15 (42.86%, 15/35), 16 (45.71%, 16/35) and 18 (51.43%, 18/35) eyes, respectively. There was no significant difference in DRSS at 1, 4 and 24 weeks after operation between the control group and the experimental group (P=0.817, 0.178, 0.105). At 12 weeks after surgery, the difference was statistically significant (P=0.020). ConclusionPPV combined with intravitreal injection of DEX in the treatment of PDR can improve postoperative visual acuity, alleviate postoperative macular edema and improve the severity of DR.
Objective To observe the therapeutic effect of autologous neurosensory retinal transplantation in repairing unhealed giant macular hole after pars plana vitrectomy (PPV). MethodsA prospective clinical study. From July 2022 to December 2023, 12 patients (12 eyes) with refractory large macular hole who received autologous neurosensory retinal transplantation treatment in Department of Ophthalmology of the First Affiliated Hospital of Zhengzhou University were selected for the study. The macular hole in affected eyes still did not close after PPV combined with inner limiting membrane removal or tamponade, and the diameter of macular hole were greater than 600 μm. All affected eyes received best corrected visual acuity (BCVA) and optical coherence tomography (OCT) examinations. The BCVA examination employed the international standard visual acuity chart, with results converted to logarithm of the minimum angle of resolution (logMAR) visual acuity for statistical analysis. During the surgery, a piece of healthy retinal neuroepithelial tissue, approximately 0.3 optic disc diameters larger than the macular hole, was removed from the upper retinal periphery and used as a graft. The graft was inserted into the macular hole with the aid of intraoperative OCT. Post-surgery, the vitreous cavity was filled with silicone oil or sterile air. The follow-up period after surgery was 6 months. The thickness of the retinal grafts was measured using the same equipment as before surgery at 3 days, 1, 3, and 6 months post-surgery. The primary focus was on observing the macular hole closure rate and changes in BCVA at 6 months post-operation. A paired t-test was used to compare BCVA before and after surgery. Results In the sample of 12 cases (12 eyes), there were 5 males with 5 eyes and 7 females with 7 eyes. The mean age was (50.4±12.6) years. The mean macular hole diameter was (1 085.6±344.0) μm; The mean eye axis length was (27.64±4.19) mm. At 6 months after surgery, all affected eyes showed macular hole were completely closed (100.0%, 12/12). The thickness of the retinal graft was measured as (206.8±21.0), (170.8±23.3), (165.6±31.6), and (157.9±31.1) μm at 3 days, 1, 3, and 6 months post-surgery, respectively. At before and 6 months after surgery, the logMAR BCVA of the affected eyes was 1.28±0.39 and 0.95±0.22, respectively. The difference in logMAR BCVA before and after surgery was statistically significant (t=3.40, P<0.05). Conclusion Autologous neurosensory retinal transplantation could effectively improve the closure rate of refractory large macular hole and improve or stabilize vision in the short run.
Objective To evaluate the anatomic outcome after lenssparing vitrectomy (LSV) or scleral buckle (SB) for stage 4 retinopathy of prematurity (ROP). MethodsThe clinical data of 39 infants (50 eyes) with 4a (20 eyes) or 4b (30 eyes) were retrospectively analyzed. The age ranged from two to 18 months, with a mean of (6.0±3.4) months. The gestational age ranged from 26 to 33 weeks, with a mean of (30.0±1.6) weeks. The birth weight ranged from 800 to 1900 g, with a mean of (1404.5±237.6) g. Nineteen eyes underwent SB and 31 eyes underwent LSV. Follow-up ranged from 6 to 84 months, with a mean of (26.0±21.7) months. The anatomical and refractive results were reviewed at the final follow-up. ResultsThe anatomic success of SB was 100.0% (19 of 19 eyes) and that of LSV was 87.1% (27 of 31 eyes). Among the patients in whom treatment failed, 4 were in the LSV group (4/31, 12.9%). The buckles of 5 eyes (5/19, 26.3%) were removed. At the end of the followup, the mean myopic refraction was (-4.46±2.49) diopters (ranging from -1.25 to 11.00 diopters) in the LSV group, and (-3.21±1.96) diopters (ranging from -1.25 to 9.25 diopters) in the SB group. There was no significant difference between two groups (F=2.76, P=0.103). ConclusionThe anatomic outcome after LSV or SB for stage 4 ROP was excellent.
ObjectiveTo observe the effectiveness and safety of pars plana vitrectomy (PPV) combined with inner limiting membrane (ILM) removal and 41G microneedle subretinal injection of balanced salt solution (BSS) in the treatment of refractory macular hole. MethodsA prospective clinical study. From January to June 2023, 20 cases (20 eyes) of refractory macular hole patients diagnosed through examination at The Affiliated Eye Hospital of Nanchang University were included in the study. The basal diameter of the affected eye's basal diameter (BD) was >1 000 μm. Macular hole index (MHI) was <0.5. The affected eye received treatment with 23G PPV combined with ILM removal and 41G microneedle subretinal injection of BSS. Best corrected visual acuity (BCVA), microperimetry, and optical coherence tomography angiography (OCTA) were performed before and 1, 2, 3, and 6 months after surgery for the affected eye. BCVA examination was performed using standard logarithmic visual acuity chart, and convert it to logarithmic minimum resolution angle (logMAR) visual acuity for statistical purposes. MP-3 microperimetry was used for micro view examination, record the mean sensitivity (MS) of the retinal within a 12° range of the fovea. OCTA was used to measure the area of the avascular zone of the macula (FAZ), perimeter of the FAZ (PERIM), retinal vascular length density (VLD), and vascular perfusion density (VPD). The changes in BCVA, MS, FAZ area, PERIM, VLD, VPD before and after surgery were compared and analyzed. After the same time, the closure of macular hole and the occurrence of complications after surgery were observed. Single factor analysis of variance was used to compare the observation indicators at different times before and after surgery. The correlation between various observation indicators and preoperative minimum diameter (MD), BD, and hiatus height at 6 months after surgery were analyzed using Pearson correlation analysis. ResultsAmong the 20 cases with 20 eyes, there were 2 males with 2 eyes and 18 females with 18 eyes. Age was (61.45±8.56) years old. The logMAR BCVA, MS, FAZ area, PERIM, VLD, and VPD of the affected eye were 1.46±0.21, (16.20±5.81) dB、(0.40±0.17) mm2, (2.89±0.99) mm, (6.23±3.59) mm−1, (0.17±0.10)%, respectively. Six months after surgery, out of 20 eyes, macular hole closure and incomplete closure were 18 (90.0%, 18 /20) and 2 (10.0%, 2 /20) eyes, respectively. The logMAR BCVA, MS, FAZ area, PERIM, VLD, and VPD were 0.80±0.20, (22.20±4.60) dB, (0.18±0.10) mm2, (1.83±0.80) mm, (9.54±2.88) mm−1, (0.31±0.14)%. Compared with before surgery, the differences were statistically significant (P<0.05). The correlation analysis results showed a positive correlation (P<0.05) between preoperative BD and postoperative 6-month PERIM and VPD. There was a negative correlation between preoperative MD and postoperative VLD at 6 months (P<0.05). There was a negative correlation between preoperative MHI and logMAR BCVA and VPD at 6 months after surgery (P<0.05). No complications such as elevated or decreased intraocular pressure, damage to retinal pigment epithelium, retinal hemorrhage, endophthalmitis, or retinal detachment occurred after surgery in all affected eyes. ConclusionMinimally invasive PPV combined with ILM removal and 41G microneedle subretinal injection of BSS can effectively improve the closure rate of refractory macular hole patients in the short term, improve vision, and have good safety.
ObjectiveTo investigate the clinical characteristics of patients with high-myopia macular hole retinal detachment (MHRD) combined with choroidal detachment and to preliminarily analyze factors associated with postoperative hole closure. MethodsA retrospective clinical case series study. A total of 68 patients with high myopia (68 eyes) with MHRD diagnosed by Department of Ophthalmology, Peking University People’s Hospital from January 2019 to April 2024 were included in this study. Among them, there were 14 males (14 eyes) and 54 females (54 eyes). The mean age was (61.10±9.66) years. All eyes were treated with pars plana vitrectomy (PPV) combined with silicone oil or gas filling. Best corrected visual acuity (BCVA), intraocular pressure, and B-mode ultrasonography were performed. The BCVA test was performed using the Snellen visual acuity chart, which was statistically converted to logarithm of the minimum angle of resolution (logMAR) visual acuity. The range of choroidal detachment was defined according to the number of involved quadrants observed in B-mode ultrasound or surgery, which was divided into 1 to 4 quadrants. Axial length (AL) was measured under retinal reattachment. In 68 eyes, there were 17 eyes with choroidal detachment and 51 eyes without choroidal detachment, respectively. There were 17 eyes with choroidal detachment, and the detachment range involved 1, 2, 2 and 12 eyes in 1, 2, 3 and 4 quadrants, respectively. During operation, 13% C3F8 was filled in 2 eyes, all of which were not complicated with choroidal detachment. 66 eyes were filled with silicone oil. According to whether the patients were complicated with choroidal detachment, the patients were divided into the group without choroidal detachment and the group with choroidal detachment. Independent sample t test, Welch two-sample t test or Mann-Whitney U test were used for comparison between groups. Generalized linear regression and logistic regression were used to analyze the relationship between the aperture size of postoperative unclosed holes and the closed hole after surgery and clinical factors. ResultsAt 3 months after surgery, the logMAR BCVA of the affected eye was 1.29±0.43, with a preoperative to postoperative difference ranging from −1.60 to 0.70 (−0.51±0.51) logMAR units. The AL ranged from 26.6 to 34.3 (29.60±2.12) mm. Among 68 eyes, macular hole of 37 (54.4%, 37/68) eyes were open and 31 (45.6%, 31/68) eyes were closed, respectively. The hole diameter of the open eye was (753±424) µm. There was no significant difference in age, course of disease and AL between the two groups (W=412.0, 477.5, 427.0; P>0.05). Before operation, BCVA in patients with choroidal detachment was worse (W=257.5) and intraocular pressure was lower (t=4.051) in patients with choroidal detachment compared with those without choroidal detachment, with statistical significance (P<0.05). At 3 months after surgery, BCVA in patients with choroidal detachment was significantly worse than that in patients without choroidal detachment, with statistical significance (W=284.0, P<0.05). There were no significant differences in logMAR BCVA difference (t=0.616) and macular hole closure rate (χ2=0.000) before and after surgery (P>0.05). The reoperation rate of retinal detachment due to persistent or recurrent retinal detachment was significantly higher in the group with choroid detachment than in the group without choroid detachment, and the difference was statistically significant (odds ratio=6.424, P<0.05). Logistic regression analysis showed that young age was significantly correlated with macular hole closure failure after surgery (β=0.077, P=0.015). There was no correlation between AL, duration of disease, BCVA before surgery, intraocular pressure, wether combined with choroid detachment range and postoperative hole closure (β=−0.072, 0.000, 0.672, −0.085, −0.391; P>0.05). ConclusionsConcomitant choroidal detachment adversely affected on both pre-operative and post-operative visual acuity in high myopia MHRD. It is closely associated with the risk of recurrent retinal detachment and the needs of multiple operations, but has no significant effect on hole closure rate. Lower age of onset may be a risk factor for macular hole closure.
ObjectiveTo compare the efficacy of pars plana vitrectomy (PPV) combined with subretinal or intravitreal injection of Conbercept for the treatment of refractory diabetic macular edema (DME). MethodsA retrospective case control study. From June 2022 to March 2024, 32 eyes of 32 patients with refractory DME diagnosed at The Affiliated Eye Hospital of Nanchang University were included in the study. There were 17 male cases with 17 eyes and 15 female cases with 15 eyes. Age was (57.44±8.99) years old; The duration of diabetes was (12.72±6.11) years. All patients had received regular treatment with anti-vascular endothelial growth factor (VEGF) drugs or corticosteroid drugs for at least 5 times, and had undergone focal retinal laser photocoagulation or panretinal laser photocoagulation, the central macular thickness (CMT) persisted or decreased by less than 50 μm. All affected eyes underwent best-corrected visual acuity (BCVA), intraocular pressure, optical coherence tomography (OCT), microperimetry, and laboratory glycated hemoglobin (HbA1c) testing. BCVA was measured using a standard logarithmic visual acuity chart, and converted to the logarithm of the minimum angle of resolution (logMAR) for statistical analysis. CMT was measured using an OCT device. Microperimetry was performed using an MP-3 microperimeter, recording the mean sensitivity (MS) of the retina within a 12° range of the fovea. The affected eyes were treated with 23G PPV combined with internal limiting membrane peeling and either macular subretinal or intravitreal injection of Conbercept, and were divided into subretinal injection group and the intravitreal injection group, each consisting of 16 cases and 16 eyes. The same equipment and methods as before surgery were used for related examinations at 1, 3, and 6 months post-surgery. Changes in BCVA, CMT, and MS were observed and compared, as well as the number of additional anti-VEGF treatments required within 6 months after surgery. Intergroup comparisons were made using independent samples t tests, and repeated measures data were analyzed using repeated measures analysis of variance. ResultsThe age (t=-0.271), gender composition (χ2=0.001), duration of diabetes (Z=-0.868), HbA1c (t=-0.789), intraocular pressure (t=1.689), logMAR BCVA (t=1.393), CMT (t=-0.613), MS (Z=-0.132), and the number of anti-VEGF injections (t=-0.752) between the subretinal injection group and the intravitreal injection group showed no statistically significant differences (P>0.05). The within-subject effects comparison of BCVA, CMT, and MS at 1, 3, and 6 months post-surgery compared to pre-surgery for all affected eyes showed statistically significant differences (F=8.060, 125.722, 39.054; P<0.05). The overall comparison of logMAR BCVA between the subretinal and intravitreal injection groups post-surgery showed no statistically significant difference (F=0.662, P=0.422), however, comparisons of CMT (F=4.540) and MS (F=6.066) showed statistically significant differences (P<0.05). At 1, 3, and 6 months post-surgery, comparisons of logMAR BCVA between the two groups showed no statistically significant differences (t=-0.123, 0.239, 1.087; P>0.05), comparisons of CMT showed statistically significant differences (t=-3.474, -4.832, -2.482; P<0.05), comparisons of MS showed statistically significant differences at 1 and 3 months (t=-2.940, -2.545; P<0.05), but not at 6 months (t=-1.527, P>0.05). At 6 months post-surgery, the number of additional intravitreal anti-VEGF injections required in the subretinal and intravitreal injection groups showed a statistically significant difference (Z=-2.033, P=0.042). During the follow-up period and at the final follow-up, no complications such as injection site bleeding, retinal detachment, vitreous hemorrhage, macular hole, or retinal pigment epithelial tear or atrophy occurred in all affected eyes. ConclusionCompared with intravitreal injection, subretinal injection of Conbercept for the treatment of refractory DME has more advantages in reducing macular edema and improving visual function in the macular area, and also reduces the number of postoperative anti-VEGF drug treatments.
Objective To analyze the surgical feasibility, operative key points and visual function recovery of scleral buckling in patients with rhegmatogenous retinal detachment (RRD) with large or giant retinal hole. Methods RRD patients with large or giant retinal hole who underwent scleral buckling in Chengdu Aidi Eye Hospital between January 1, 2019 and December 31, 2020 were retrospectively selected. The general data, complications and postoperative recovery of the patients were observed. Results A total of 344 inpatients (351 eyes) underwent scleral buckling with RRD, including 43 patients (43 eyes) with retinal detachment of large or giant hole. Among the 43 patients, there were 30 males (30 eyes) and 13 females (13 eyes); 42 cases were successfully operated and got retinal reattachment, and 1 failed. One week later, the patient underwent vitrectomy combined with silicone oil tamponade, and got retinal reattachment. No serious complications occurred in the patients after operation. The visual acuity of most patients improved after surgery. ConclusionsScleral buckling is still an effective method to treat RRD. It is still suitable for more patients as long as they are carefully checked before operation and the operators master the key points of operation. At the same time, more patients’ vitreous bodies can be preserved, and the normal structure and intraocular environment of the eyeball can be maintained.
Objective To compare the outcomes of ranibizumab and conbercept adjunct for pars plana vitrectomy (PPV) in the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective randomized case-control study. From June 2022 to December 2023, 90 cases (90 eyes) of PDR patients diagnosed through ophthalmic examination at Department of Ophthalmology of Gansu Provincial Hospital were included in the study. All patients underwent the best corrected visual acuity (BCVA), intraocular pressure, B-mode ultrasound, and optical coherence tomography (OCT) examinations. The central macular thickness (CMT) was measured using an OCT instrument. The patients were randomly divided into a intravitreal injection of ranibizumab group (monoclonal-antibody group) and a intravitreal injection of conbercept group (fusion-protein group) using a random number table method, with 45 cases (45 eyes) in each group. Two groups of patients were intravitreal injected with 10 mg/ml ranibizumab or conbercept 0.05 ml, respectively. A standard 23G PPV was performed through the flat part of the ciliary body 3-7 days after intravitreal injection. Relevant examinations were performed using the same equipments and methods as before surgery at postoperative 1 week, 1, 3, 6, and 12 months. The PPV time, intraoperative use of intraocular electrocoagulation, incidence of iatrogenic retinal breaks, and sterile air or silicone oil tamponade rate in the vitreous cavity, the postoperative changes of BCVA and CMT, and incidence of complications were compared between two groups. Independent sample t test was used for inter group comparison. ResultsThe intraoperative utilization rate of intraocular electrocoagulation in the monoclonal-antibody group was higher than that in the fusion-protein group, and the difference was statistically significant (χ2=3.876, P<0.05). There were no statistically significant differences in the PPV time (t=0.152), intraoperative bleeding rate (χ2=0.800), incidence of iatrogenic retinal breaks (χ2=1.975), and sterile air and silicone oil tamponade rate in the vitreous cavity (χ2=1.607, 1.553) between the two groups (P>0.05). There were no statistically significant differences in early and late postoperative vitreous hemorrhage (χ2=1.235, 2.355), and re-PPV (χ2=2.355) between two groups (P>0.05). The BCVA of the fusion-protein group was significantly better than that of the monoclonal-antibody group at postoperative 3 months, and the difference was statistically significant (t=2.428, P<0.05). The CMT of the fusion-protein group was lower than that in the monoclonal-antibody group at postoperative 1 week, and the difference was statistically significant (t=2.739, P<0.05). None of the patients experienced endophthalmitis, retinal artery occlusion, or severe cardiovascular events after surgery. ConclusionCompared with intravitreal injection of ranibizumab before PPV, intravitreal injection of conbercept before PPV in PDR patients can shorten the surgical time, reduce intraoperative bleeding rate, lower the rate of electrocoagulation and intraocular tamponade, and incidence of iatrogenic retinal breaks, and improve the visual acuity.