west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "wearable" 22 results
  • Continuous vital signs monitoring using wireless wearable devices in patients after video-assisted thoracoscopic surgery for lung cancer: A prospective self-control study

    ObjectiveTo explore the reliability and safety of continuous monitoring of vital signs in patients using wireless wearable monitoring devices after video-assisted thoracoscopic surgery (VATS) for lung cancer. MethodsThe patients undergoing VATS for lung cancer in West China Hospital, Sichuan University from May to August 2023 were prospectively enrolled. Both wireless wearable and traditional wired devices were used to monitor the vital signs of patients after surgery. Spearman correlation analysis, paired sample t test and ratio Bland-Altman method were used to test the correlation, difference and consistency of monitoring data measured by the two devices. The effective monitoring rate of the wireless wearable device within 12 hours was calculated to test the reliability of its continuous monitoring. ResultsA total of 20 patients were enrolled, including 15 females and 5 males with an average age of 46.20±11.52 years. Data collected by the two monitoring devices were significantly correlated (P<0.001). Respiratory rate and blood oxygen saturation data collected by the two devices showed no statistical difference (P>0.05), while heart rate measured by wireless wearable device was slightly lower (\begin{document}$ \bar{d} $\end{document}=−0.307±1.073, P<0.001), and the blood pressure (\begin{document}$ \bar{d} $\end{document}=1.259±5.354, P<0.001) and body temperature(\begin{document}$ \bar{d} $\end{document}=0.115±0.231, P<0.001) were slightly higher. The mean ratios of heart rate, respiratory rate, blood oxygen saturation, blood pressure and body temperature collected by the two devices were 0.996, 1.004, 1.000, 1.014, and 1.003, respectively. The 95% limits of agreement (LoA) and 95% confidence interval of 95%LoA of each indicator were within the clinically acceptable limit. The effective monitoring rate of each vital signs within 12 hours was above 98%. ConclusionThe wireless wearable device has a high accuracy and reliability for continuous monitoring vital signs of patients after VATS for lung cancer, which provides a security guarantee for subsequent large-scale clinical application and further research.

    Release date:2024-02-20 03:09 Export PDF Favorites Scan
  • Application and research of smart wearable devices for heart and brain diseases related to high altitude

    Smart wearable devices play an increasingly important role in physiological monitoring and disease prevention because they are portable, real-time, dynamic and continuous.The popularization of smart wearable devices among people under high-altitude environment would be beneficial for the prevention for heart and brain diseases related to high altitude. The current review comprehensively elucidates the effects of high-altitude environment on the heart and brain of different population and experimental subjects, the characteristics and applications of different types of wearable devices, and the limitations and challenges for their application. By emphasizing their application values, this review provides practical reference information for the prevention of high-altitude disease and the protection of life and health.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave

    In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.

    Release date: Export PDF Favorites Scan
  • Three-dimensional virtual dolphin treatment system for children with autism spectrum disorder

    In order to address the problem of traditional dolphin adjuvant therapy such as high cost and its limitation in time and place, this paper introduces a three-dimensional virtual dolphin adjuvant therapy system based on virtual reality technology. By adopting Oculus wearable three-dimensional display, the system combined natural human-computer interaction based on Leap Motion with high-precision gesture recognition and cognitive training, and achieved immersive three-dimensional interactive game for child rehabilitation training purposes. The experimental data showed that the system can effectively improve the cognitive and social abilities of those children with autism spectrum disorder, providing a useful exploration for the rehabilitation of those children.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Application status and future trend analysis of wearable devices in the field of clinical nursing

    Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.

    Release date:2024-11-27 02:31 Export PDF Favorites Scan
  • Research on the awareness and clinical needs of wearable artificial kidney among maintenance hemodialysis patients

    Objective To investigate the awareness and clinical needs of wearable artificial kidney among maintenance hemodialysis (MHD) patients, and to analyze the related influencing factors. Methods MHD patients were recruited from 2 tertiary hospitals in Sichuan province between April and June 2021. The convenient sampling method was used to select patients. The factors influencing the awareness and demand of MHD patients for wearable artificial kidney were analyzed. Results A total of 119 MHD patients were included. The awareness of wearable artificial kidney among the patients was mainly “never heard” (61 cases) and “heard” (58 cases). Most MHD patients (60 cases) were willing to use and participate in clinical trials in the future. The results of logistic regression indicated that the cost on household economy and treatment effect on life quality were the influencing factors for MHD patients’ awareness of wearable artificial kidney (P<0.05). The average duration of single dialysis and the impact of treatment on working or studying were the influencing factors for MHD patients’ needs of wearable artificial kidney (P<0.05). Conclusions The awareness of wearable artificial kidney is low among MHD patients. However, most MHD patients showed great interest in the wearable artificial kidney after preliminary understanding, suggesting that the future clinical application of wearable artificial kidney has great demand.

    Release date:2023-08-24 10:24 Export PDF Favorites Scan
  • Design and preliminary validation of a ubiquitous and wearable physiological monitoring system

    To achieve continuously physiological monitoring on hospital inpatients, a ubiquitous and wearable physiological monitoring system SensEcho was developed. The whole system consists of three parts: a wearable physiological monitoring unit, a wireless network and communication unit and a central monitoring system. The wearable physiological monitoring unit is an elastic shirt with respiratory inductive plethysmography sensor and textile electrocardiogram (ECG) electrodes embedded in, to collect physiological signals of ECG, respiration and posture/activity continuously and ubiquitously. The wireless network and communication unit is based on WiFi networking technology to transmit data from each physiological monitoring unit to the central monitoring system. A protocol of multiple data re-transmission and data integrity verification was implemented to reduce packet dropouts during the wireless communication. The central monitoring system displays data collected by the wearable system from each inpatient and monitors the status of each patient. An architecture of data server and algorithm server was established, supporting further data mining and analysis for big medical data. The performance of the whole system was validated. Three kinds of tests were conducted: validation of physiological monitoring algorithms, reliability of the monitoring system on volunteers, and reliability of data transmission. The results show that the whole system can achieve good performance in both physiological monitoring and wireless data transmission. The application of this system in clinical settings has the potential to establish a new model for individualized hospital inpatients monitoring, and provide more precision medicine to the patients with information derived from the continuously collected physiological parameters.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Application status and development prospects of smart wearable devices in cardiovascular diseases

    Cardiovascular disease has caused a huge burden of disease worldwide, and the rapid advancement of smart wearable devices has provided new means for early diagnosis, real-time monitoring, and event prevention of cardiovascular disease. Smart wearable devices can be classified into various categories based on detection signals and physical carrier types. Based on an overview of the composition of such devices, this article further introduces the current cutting-edge research and related market products related to smart blood pressure monitoring, electrocardiogram monitoring, and ultrasound monitoring. It also discusses the future development and challenges of such devices, aiming to provide evidence support for the research and development of smart wearable devices in the diagnosis and treatment of cardiovascular diseases in the future.

    Release date:2024-08-21 02:11 Export PDF Favorites Scan
  • Classification and Correlative Technology Development of Wearable Devices

    Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users’ ability in environmental awareness, acquirements of their own state and “ubiquitous” computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.

    Release date: Export PDF Favorites Scan
  • Quantitative assessment of motor function in patients with Parkinson's disease using wearable sensors

    Motor dysfunction is the main clinical symptom and diagnosis basis of patients with Parkinson’s disease (PD). A total of 30 subjects were recruited in this study, including 15 PD patients (PD group) and 15 healthy subjects (control group). Then 5 wearable inertial sensor nodes were worn on the bilateral upper limbs, lower limbs and waist of subjects. When completing the 6 paradigm tasks, the acceleration and angular velocity signals from different parts of the body were acquired and analyzed to obtain 20 quantitative parameters which contain information about the amplitude, frequency, and fatigue degree of movements to assess the motor function. The clinical data of the two groups were statistically analyzed and compared, and then Back Propagation (BP) Neural Network was used to classify the two groups and predict the clinical score. The final results showed that most of the parameters had significant difference between the two groups, ten times of 5-fold cross validation showed that the classification accuracy of the BP Neural Network for the two groups was 90%, and the predictive accuracy of Hoehn-Yahr (H-Y) staging and unified PD rating scale (UPDRS) Ⅲ score of the patients were 72.80% and 68.64%, respectively. This study shows the feasibility of quantitative assessment of motor function in PD patients using wearable sensors, and the quantitative parameters obtained in this paper may have reference value for future related research.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content