1. |
徐忠, 邱颖婕, 杨剑豪. 血浆外观目测比较色板的制作和应用. 中国输血杂志, 2016, 29(6): 641-643.
|
2. |
林思妮, 孙丽华. 标本溶血对检验结果产生的影响以及预防策略分析. 智慧健康, 2023, 9(3): 18-21.
|
3. |
Larrán B, Miranda M, Herrero-Latorre C, et al. Influence of haemolysis on the mineral profile of cattle serum. Animals, 2021, 11(12): 3336.
|
4. |
Lægreid I J, Wilson T, Næss K H, et al. Whole blood transfusion and paroxysmal nocturnal haemoglobinuria meet again: minor incompatibility, major trouble. Vox Sanguinis, 2022, 117(11): 1323-1326.
|
5. |
Winter K M, Webb R G, Marks D C. Red cells manufactured from lipaemic whole blood donations: do they have higher haemolysis. Vox Sanguinis, 2022, 117(12): 1351-1359.
|
6. |
庄冶. 血清标本发生溶血和脂血对生化检验结果的影响观察. 中国医药指南, 2020, 18(2): 112-113.
|
7. |
张叶华. 血标本溶血的原因及急诊采血的护理研究进展. 中外医学研究, 2020, 18(35): 183-186.
|
8. |
Hawkins R. Discrepancy between visual and spectrophotometric assessment of sample haemolysis. Annals of Clinical Biochemistry, 2002, 39(5): 521-522.
|
9. |
Simundic A M, Nikolac N, Ivankovic V, et al. Comparison of visual vs. automated detection of lipemic, icteric and hemolyzed specimens: can we rely on a human eye?. Clinical Chemistry and Laboratory Medicine, 2009, 47(11): 1361-1365.
|
10. |
Luksic A H, Nikolac Gabaj N, Miler M, et al. Visual assessment of hemolysis affects patient safety. Clinical Chemistry and Laboratory Medicine, 2018, 56(4): 574-581.
|
11. |
栾庆玲, 隋馨, 高雅松, 等. 溶血试验方法在医疗器械领域的应用. 国际感染病学(电子版), 2020, 9(2): 20.
|
12. |
Selcuk S Y, Yang X, Bai B, et al. Automated HER2 scoring in breast cancer images using deep learning and pyramid sampling. BME Front, 2024, 5: 0048.
|
13. |
殷悦, 杨琦, 张省委, 等. 全自动生化分析仪检测溶血指数的临床应用. 标记免疫分析与临床, 2021, 28(8): 1415-1420.
|
14. |
赵心宇, 顾益玲, 张丽红. 溶血标本生化项目替代性检验的可行性分析. 中国卫生检验杂志, 2022, 32(18): 2257-2260.
|
15. |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Dallas: IEEE, 2016: 779-788.
|
16. |
Wang L, Ji W, Wang G, et al. Intelligent design and optimization of exercise equipment based on fusion algorithm of YOLOv5-ResNet 50. Alexandria Engineering Journal, 2024, 104(22): 710-722.
|
17. |
Al Ameri M, Memon Q. Real-time object tracking with YOLOv5 and recurrent network//2024 7th International Conference on Electronics, Communications, and Control Engineering (ICECC), Kuala Lumpur, Malaysia: IEEE, 2024: 28-32.
|
18. |
Li C, Zhao G, Gu D, et al. Improved lightweight YOLOv5 using attention mechanism for satellite components recognition. IEEE Sensors Journal, 2023, 23(1): 514-526.
|
19. |
Yang B, Bender G, Le Q V, et al. Condconv: conditionally parameterized convolutions for efficient inference//The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada: NeurIPS, 2019: 1307-1318.
|
20. |
Chen Y, Dai X, Liu M, et al. Dynamic convolution: attention over convolution kernels//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle: IEEE, 2020: 11027-11036.
|
21. |
Li C, Zhou A, Yao A. Omni-dimensional dynamic convolution//The Tenth International Conference on Learning Representations (ICLR 2022), 2022, arXiv: 2209.07947.
|
22. |
Lau K W, Po L, Rehman Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN. Expert Systems with Applications, 2024, 236: 121352.
|
23. |
Chen P Y, Hsieh J W, Wang C Y, et al. Residual bi-fusion feature pyramid network for accurate single-shot object detection. arXiv preprint, 2019, arXiv: 1911.12051.
|
24. |
Ding X, Zhang X, Ma N, et al. RepVgg: making VGG-style ConvNets great again//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville: IEEE, 2021: 13728-13737.
|
25. |
Yang X, del Rey Castillo E, Zou Y, et al. UAV-deployed deep learning network for real-time multi-class damage detection using model quantization techniques. Automation in Construction, 2024, 159: 105254.
|