1. |
Jennifer D L S, Popple R, Agazaryan N, et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys, 2013, 87(1): 33-45.
|
2. |
Boldrini L, D’Aviero A, De Felice F. et al. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). Radiol med, 2024, 129(1): 133-151.
|
3. |
Morgan H E, Sher D J. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck. 2020, 5: 1.
|
4. |
Castelli J, Simon A, Lafond C, et al. Adaptive radiotherapy for head and neck cancer. Acta Oncol, 2018, 57(10): 1284-1292.
|
5. |
中华医学会放射肿瘤治疗学分会放疗技术学组, 中国医师协会医学技师专业委员会, 林承光, 等. CT模拟定位技术临床操作指南中国专家共识(2021版). 中华放射肿瘤学杂志, 2021, 30(6): 535-542.
|
6. |
Siewerdsen J H, Jaffray D A. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys, 2001, 28(2): 220-231.
|
7. |
Jarry G, Graham S A, Moseley D J, et al. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys, 2006, 33(11): 4320-4329.
|
8. |
Richter A, Hu Q, Steglich D, et al. Investigation of the usability of cone beam CT data sets for dose calculation. Radiat Oncol, 2008, 3: 42.
|
9. |
Yang Y, Schreibmann E, Li T, et al. Evaluation of on-board kV cone beam CT (CBCT) based dose calculation. Phys Med Biol, 2007, 52(3): 685-705.
|
10. |
Yoo S, Yin F F. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys, 2006, 66(5): 1553-1561.
|
11. |
Schulze R, Heil U, Groß D, et al. Artefacts in CBCT: a review. Dentomaxillofac Rad, 2011, 40(5): 265-273.
|
12. |
Meroni S, Mongioj V, Giandini T, et al. EP-1822: limits and potentialities of the use of CBCT for dose calculation in adaptive radiotherapy. Radiother Oncol, 2016, 119: S854-S855.
|
13. |
Elstrøm U V, Olsen S R K, Muren L P, et al. The impact of CBCT reconstruction and calibration for radiotherapy planning in the head and neck region - a phantom study. Acta Oncol, 2014, 53(8): 1114-1124.
|
14. |
Yu B, Wang Y, Wang L, et al. Medical image synthesis via deep learning. Adv Exp Med Biol, 2020, 1213: 23-44.
|
15. |
Duan L, Ni X, Liu Q, et al. Unsupervised learning for deformable registration of thoracic CT and cone-beam CT based on multiscale features matching with spatially adaptive weighting. Med Phys, 2020, 47(11): 5632-5647.
|
16. |
Liang X, Bibault J, Leroy T, et al. Automated contour propagation of the prostate from pCT to CBCT images via deep unsupervised learning. Med Phys, 2021, 48(4): 1764-1770.
|
17. |
Wang H, Liu X, Kong L, et al. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy. Strahlenther Onkol, 2023, 199(5): 485-497.
|
18. |
Liu Y, Lei Y, Wang T, et al. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy. Med Phys, 2020, 47(6): 2472-2483.
|
19. |
Cao X, Yang J, Gao Y, et al. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal, 2017, 41: 18-31.
|
20. |
Yang B, Chang Y, Liang Y, et al. A comparison study between CNN-based deformed planning CT and CycleGAN-based synthetic CT methods for improving iCBCT image quality. Front Oncol, 2022, 12: 896795.
|
21. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer, 2015: 234-241.
|
22. |
Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks// International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2242-2251.
|
23. |
Chen L, Liang X, Shen C, et al. Synthetic CT generation from CBCT images via deep learning. Med Phys, 2020, 47(3): 1115-1125.
|
24. |
Liang X, Chen L, Nguyen D, et al. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol, 2019, 64(12): 125002.
|
25. |
Yuan N, Rao S, Chen Q, et al. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Med Phys, 2022, 49(5): 3263-3277.
|
26. |
Liu Y, Liao S, Zhu Y, et al. Channel-spatial attention guided CycleGAN for CBCT-based synthetic CT generation to enable adaptive radiotherapy. IEEE T Comput Imag, 2024, 10: 818-831.
|
27. |
Crawshaw M. Multi-task learning with deep neural networks: A survey. arXiv preprint arXiv, 2020: 2009.09796.
|
28. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
29. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2014: 1409.1556.
|
30. |
Wu Y, He K. Group normalization// Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19.
|
31. |
Tong T, Li G, Liu X, et al. Image super-resolution using dense skip connections// Proceedings of the IEEE International Conference on Computer Vision(ICCV). Venice: IEEE, 2017: 4799-4807.
|
32. |
Cao Z, Gao X, Chang Y, et al. Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses. J Appl Clin Med Phys, 2023, 24(8): e14004.
|