1. |
van der List J P, Zuiderbaan H A, Pearle A D. Why do medial unicompartmental knee arthroplasties fail today?. J Arthroplasty, 2016, 31(5): 1016-1021.
|
2. |
Epinette J-A, Brunschweiler B, Mertl P, et al. Unicompartmental knee arthroplasty modes of failure: wear is not the main reason for failure: a multicentre study of 418 failed knees. Orthop Traumatol-Surg Res, 2012, 98(6): S124-S130.
|
3. |
Cheng C-K, Huang C-H, Liau J-J, et al. The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses-a biomechanical study. Clin Biomech, 2003, 18(3): 231-236.
|
4. |
Dobelle E, Aza A, Avellan S, et al. Implantation of the femoral component relative to the tibial component in medial unicompartmental knee arthroplasty: a clinical, radiological, and biomechanical study. J Arthroplasty, 2022, 37(6): S82-S87.
|
5. |
Kamenaga T, Takayama K, Ishida K, et al. Central implantation of the femoral component relative to the tibial insert improves clinical outcomes in fixed-bearing unicompartmental knee arthroplasty. J Arthroplasty, 2020, 35(11): 3108-3116.
|
6. |
Ma P, Muheremu A, Zhang S, et al. Biomechanical effects of fixed-bearing femoral prostheses with different coronal positions in medial unicompartmental knee arthroplasty. J Orthop Surg Res, 2022, 17(1): 150.
|
7. |
Kang K-T, Son J, Koh Y-G, et al. Effect of femoral component position on biomechanical outcomes of unicompartmental knee arthroplasty. Knee, 2018, 25(3): 491-498.
|
8. |
Walsh J M, Burnett R A, Serino J, et al. Painful unicompartmental knee arthroplasty: Etiology, diagnosis and management. Arch Bone Jt Surg-ABJS, 2024, 12(8): 546.
|
9. |
Godest A, Beaugonin M, Haug E, et al. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech, 2002, 35(2): 267-275.
|
10. |
de Grave P W, Luyckx T, Ryckaert A, et al. Medial unicompartmental knee arthroplasty with a fixed bearing implant. JBJS Essent Surg Tech, 2019, 9(3): e26.
|
11. |
Cobb J, Dixon H, Dandachli W, et al. The anatomical tibial axis: reliable rotational orientation in knee replacement. Bone Joint J, 2008, 90(8): 1032-1038.
|
12. |
Simileysky A, Hull M L. Repeatability, reproducibility, and agreement of three methods for finding the mechanical axis of the human tibia. Comput Methods Biomech Biomed Eng, 2022, 25(11): 1301-1309.
|
13. |
Sekiguchi K, Nakamura S, Kuriyama S, et al. Effect of tibial component alignment on knee kinematics and ligament tension in medial unicompartmental knee arthroplasty. Bone Jt Res, 2019, 8(3): 126-135.
|
14. |
Sopher R S, Amis A A, Calder J D, et al. Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Med Eng Phys, 2017, 42: 80-90.
|
15. |
Berahmani S, Janssen D, Wolfson D, et al. FE analysis of the effects of simplifications in experimental testing on micromotions of uncemented femoral knee implants. J Orthop Res, 2016, 34(5): 812-819.
|
16. |
Brockett C L, Abdelgaied A, Haythornthwaite T, et al. The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study. Proc Inst Mech Eng Part H-J Eng Med, 2016, 230(5): 429-439.
|
17. |
Donahue T L H, Hull M, Rashid M M, et al. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech, 2003, 36(1): 19-34.
|
18. |
Kelly N, Cawley D, Shannon F, et al. An investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty. Med Eng Phys, 2013, 35(11): 1599-1606.
|
19. |
Sánchez E, Schilling C, Grupp T M, et al. The effect of different interference fits on the primary fixation of a cementless femoral component during experimental testing. J Mech Behav Biomed Mater, 2021, 113: 104189.
|
20. |
Weber P, Woiczinski M, Steinbrück A, et al. Increase in the tibial slope in unicondylar knee replacement: analysis of the effect on the kinematics and ligaments in a weight-bearing finite element model. Biomed Res Int, 2018, 2018(1): 8743604.
|
21. |
任佳轩, 陈瑱贤, 张静, 等. 单髁膝关节置换术股骨部件不同内外侧安装位置的骨肌多体动力学研究. 生物医学工程学杂志, 2023, 40(3): 508-514.
|
22. |
Simpson D, Price A, Gulati A, et al. Elevated proximal tibial strains following unicompartmental knee replacement-a possible cause of pain. Med Eng Phys, 2009, 31(7): 752-757.
|
23. |
Imada T, Hanada M, Murase K, et al. Enhancing the unicompartmental knee arthroplasty safety via finite element analysis of coronary plane alignment: A case report. Cureus, 2024, 16(6): e61765.
|
24. |
Taylor M, Barrett D S, Deffenbaugh D. Influence of loading and activity on the primary stability of cementless tibial trays. J Orthop Res, 2012, 30(9): 1362-1368.
|
25. |
Jasty M, Bragdon C, Burke D, et al. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg, 1997, 79(5): 707-714.
|
26. |
Jasty M, Bragdon C R, Zalenski E, et al. Enhanced stability of uncemented canine femoral components by bone ingrowth into the porous coatings. J Arthroplasty, 1997, 12(1): 106-113.
|