1. |
Huang S C, Pareek A, Seyyedi S, et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med, 2020, 3(1): 136.
|
2. |
Das P, Neelima A. An overview of approaches for content-based medical image retrieval. Int J Multim Inf Retr, 2017, 6(4): 271-280.
|
3. |
Peng Y, Qi J, Huang X, et al. CCL: Cross-modal correlation learning with multigrained fusion by hierarchical network. IEEE Trans on Mul, 2017, 20(2): 405-420.
|
4. |
苏海, 钟雨辰. 基于偏差抑制对比学习的无监督深度哈希图像检索. 计算机系统应用, 2024: 1-9.
|
5. |
刘华咏, 徐明慧. 基于混合注意力与偏振非对称损失的哈希图像检索. 计算机科学, 2024: 1-12.
|
6. |
Jiang Q Y, Li W J. Deep cross-modal hashing// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3232-3240.
|
7. |
Xu L, Zeng X, Zheng B, et al. Multi-manifold deep discriminative cross-modal hashing for medical image retrieval. IEEE Trans Image Process, 2022, 31: 3371-3385.
|
8. |
Guan A, Liu L, Fu X, et al. Precision medical image hash retrieval by interpretability and feature fusion. Comput Methods Programs Biomed, 2022, 222: 106945.
|
9. |
Fang J, Fu H, Liu J. Deep triplet hashing network for case-based medical image retrieval. Med Image Anal, 2021, 69: 101981.
|
10. |
Han J, Men A, Liu Y, et al. IoT-V2E: an uncertainty-aware cross-modal hashing retrieval between infrared-videos and EEGs for automated sleep state analysis. IEEE Internet Things J, 2024, 11(3): 4551-4569.
|
11. |
Huang S C, Pareek A, Zamanian R, et al. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Sci Rep, 2020, 10(1): 22147.
|
12. |
Li J, Li D, Xiong C, et al. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation// International Conference on Machine Learning. PMLR, 2022: 12888-12900.
|
13. |
Bao H, Wang W, Dong L, et al. VLMo: Unified vision-language pre-training with mixture-of-modality-experts. Adv Neural Inf Process Syst, 2022, 35: 32897-32912.
|
14. |
Li J, Selvaraju R, Gotmare A, et al. Align before fuse: Vision and language representation learning with momentum distillation. Adv Neural Inf Process Syst, 2021, 34: 9694-9705.
|
15. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS2017). Long Beach: NIPS, 2017: 6000-6010.
|
16. |
Touvron H, Cord M, Douze M, et al. Training data-efficient image transformers & distillation through attention// International Conference on Machine Learning. PMLR, 2021: 10347-10357.
|
17. |
Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv, 2018: 1810.04805.
|
18. |
Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv preprint arXiv, 2017: 1711.05101.
|
19. |
Nie X, Wang B, Li J, et al. Deep multiscale fusion hashing for cross-modal retrieval. IEEE Trans Circuits Syst Video Technol, 2020, 31(1): 401-410.
|
20. |
Tu R C, Mao X L, Ma B, et al. Deep cross-modal hashing with hashing functions and unified hash codes jointly learning. IEEE Trans Knowl Data Eng, 2020, 34(2): 560-572.
|
21. |
Li T, Yang X, Wang B, et al. Bi-CMR: Bidirectional reinforcement guided hashing for effective cross-modal retrieval// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2022, 36(9): 10275-10282.
|
22. |
Li C, Deng C, Li N, et al. Self-supervised adversarial hashing networks for cross-modal retrieval// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4242-4251.
|
23. |
Xie D, Deng C, Li C, et al. Multi-task consistency-preserving adversarial hashing for cross-modal retrieval. IEEE Trans Image Process, 2020, 29: 3626-3637.
|
24. |
Xu R, Li C, Yan J, et al. Graph convolutional network hashing for cross-modal retrieval// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2019, 2019: 982-988.
|
25. |
Tu J, Liu X, Lin Z, et al. Differentiable cross-modal hashing via multimodal transformers// Proceedings of the 30th ACM International Conference on Multimedia. Lisboa: ACM, 2022: 453-461.
|