1. |
World Health Organization. World cancer report: Cancer research for cancer prevention. Geneva: World Health Organization, 2020.
|
2. |
马国祥, 严传波, 杨凌菲, 等. 基于改进的多尺度深度残差网络肝包虫超声影像诊断方法. 东北师大学报(自然科学版), 2023, 55(1): 80-87.
|
3. |
Medley D O, Santiago C, Nascimento J C. CyCoSeg: a cyclic collaborative framework for automated medical image segmentation. IEEE Trans Pattern Anal Mach Intell, 2021, 44(11): 8167-8182.
|
4. |
孙玉波, 刘嘉男, 孙泽文, 等. 一种基于生成对抗网络的无监督域自适应磁共振图像分割方法. 生物医学工程学杂志, 2022, 39(6): 1181-1188.
|
5. |
Zhang H, Burrows L, Meng Y, et al. Weakly supervised segmentation with point annotations for histopathology images via contrast-based variational model// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 15630-15640.
|
6. |
高威, 蒋慧, 焦一平, 等. 基于多任务和注意力的胰腺癌全切片图像多组织分割模型. 生物医学工程学杂志, 2023, 40(0): 70-78.
|
7. |
Hu Q, Chen Y, Xiao J, et al. Label-free liver tumor segmentation// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7422-7432.
|
8. |
刘云鹏, 李瑾, 王宇, 等. 图像增强下基于生成对抗网络和卷积神经网络的CT与MRI融合方法. 生物医学工程学杂志, 2023, 40(2): 208-216.
|
9. |
Rahman A, Valanarasu J M J, Hacihaliloglu I, et al. Ambiguous medical image segmentation using diffusion models// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 11536-11546.
|
10. |
吴玉超, 林岚, 吴水才. 基于多尺度、多路注意力融合机制的多模态高等级脑胶质瘤语义分割网络. 生物医学工程学杂志, 2022, 39(3): 433-440.
|
11. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer, 2015, 9351: 234-241.
|
12. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas. arXiv preprints, 2018: 1804.03999.
|
13. |
Zhang Y, Liu Y, Cheng H, et al. Fully multi-target segmentation for breast ultrasound image based on fully convolutional network. Med Biol Eng Comput, 2020, 58: 2049-2061.
|
14. |
贡荣麟, 施俊, 王骏. 面向乳腺超声图像分割的混合监督双通道反馈U-Net. 中国图象图形学报, 2020, 25(10): 2206-2217.
|
15. |
Wang K, Liang S, Zhong S, et al. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network. Med Phys, 2021, 48(8): 4262-4278.
|
16. |
Chen G, Liu Y, Dai Y, et al. BAGNet: bidirectional aware guidance network for malignant breast lesions segmentation// Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). Tianjin: IEEE, 2022: 112-116.
|
17. |
Chen G-P, Li L, Dai Y, et al. Rethinking the unpretentious U-net for medical ultrasound image segmentation. Pattern Recogn, 2023, 142: 109728.
|
18. |
Vakanski A, Min X, Freer P E. Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol, 2020, 46(10): 2819-2833.
|
19. |
Lei B, Huang S, Li H, et al. Self-co-attention neural network for anatomy segmentation in whole breast ultrasound. Med Image Anal, 2020, 64: 101753.
|
20. |
Xue C, Zhu L, Fu H, et al. Global guidance network for breast lesion segmentation in ultrasound images. Med Image Anal, 2021, 70: 101989.
|
21. |
Punn N S, Agarwal S. RCA-IUnet: a residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging. Mach Vis Appl, 2022, 33(2): 27.
|
22. |
Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. Comput Sci, 2015, 14(7): 38-39.
|
23. |
邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述. 计算机学报, 2022(8): 045.
|
24. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
25. |
Al-Dhabyani W, Gomaa M, Khaled H, et al. Dataset of breast ultrasound images. Data in Brief, 2020, 28: 104863.
|
26. |
Yap M H, Pons G, Martí J, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform, 2017, 22(4): 1218-1226.
|
27. |
Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. Unet++: a nested U-Net architecture for medical image segmentation// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop and 8th International Workshop, Granada, Spain. Cham: Springer International Publishing, 2018: 3-11.
|
28. |
Huang H, Lin L, Tong R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation// International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona: IEEE, 2020: 1055-1059.
|