1. |
Onneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
|
2. |
Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett, 2018, 15(5): 749-753.
|
3. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging, 2019, 39(6): 1856-1867.
|
4. |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2): 203-211.
|
5. |
秦辰栋, 王永雄, 张佳鹏. 基于卷积胶囊编码器和多尺度局部特征共现的图像分割网络. 计算机应用研究, 2024, 41(4): 1264-1269.
|
6. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS2017). Long Beach: NIPS, 2017: 6000-6010.
|
7. |
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10012-10022.
|
8. |
Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: Swin Transformer for semantic segmentation of brain tumors in MRI images// International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 272-284.
|
9. |
周志, 张孙杰, 张晓玥. 一种改进U型神经网络的医学细胞核图像分割方法. 小型微型计算机系统, 2023, 44(1): 110-116.
|
10. |
孙红, 朱江明, 吴一凡, 等. GFENet: 基于Transformer的高效医学图像分割网络. 小型微型计算机系统, 2024, 45(7): 1728-1733.
|
11. |
He Y, Nath V, Yang D, et al. Swinunetr-v2: Stronger swin Transformers with stagewise convolutions for 3D medical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 416-426.
|
12. |
Oktay O. Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv, 2018: 1804.03999.
|
13. |
Zeng G, Zheng G. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Med Image Anal, 2019, 57: 149-164.
|
14. |
Chollet F. Xception: Deep learning with depthwise separable convolutions// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1251-1258.
|
15. |
Wang W, Xie E, Li X, et al. Pyramid vision Transformer: A versatile backbone for dense prediction without convolutions// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE 2021: 568-578.
|
16. |
Lee H H, Bao S, Huo Y, et al. 3D UX-Net: A large kernel volumetric convnet modernizing hierarchical Transformer for medical image segmentation. arXiv preprint arXiv, 2022: 2091.15076.
|
17. |
Wen X W, Chen C, Meng D, et al. Transbts: Multimodal brain tumor segmentation using Transformer// International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg: Springer. 2021: 109-119.
|
18. |
Zhou H Y, Guo J, Zhang Y, et al. nnFormer: Volumetric medical image segmentation via a 3D Transformer. IEEE Trans Image Process, 2023, 32: 4036-4045.
|
19. |
Li J, Lin X, Che H, et al. Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet. Phys Med Biol, 2021, 66(11): 115010.
|
20. |
Wu Y, Xu M, Ge Z, et al. Semi-supervised left atrium segmentation with mutual consistency training// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2021. Cham: Springer International Publishing, 2021: 297-306.
|
21. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
22. |
Li H, Reichert M, Lin K, et al. Differential diagnosis for pancreatic cysts in CT scans using densely-connected convolutional networks// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 2095-2098.
|
23. |
Zhang J, Zhang Y, Jin Y, et al. MDU-Net: Multi-scale densely connected U-Net for biomedical image segmentation. Health Inf Sci Syst, 2023, 11(1): 13.
|
24. |
Huang H, Lin L, Tong R, et al. UNet 3+: A full-scale connected UNet for medical image segmentation// IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Bracelona: IEEE, 2020: 1055-1059.
|
25. |
Lee C Y, Xie S, Gallagher P, et al. Deeply-supervised nets// Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. JMLR, 2015, 38: 562-570.
|
26. |
Arrastia J, Heilenkötter N, Otero B D, et al. Deeply supervised UNet for semantic segmentation to assist dermatopathological assessment of basal cell carcinoma. J Imaging, 2021, 7(4): 71.
|
27. |
Zhou Y, Xie L, Fishman E K, et al. Deep supervision for pancreatic cyst segmentation in abdominal CT scans// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2017: 222-230.
|