| 1. | Lynn J, Park M, Ogunwale C, et al. A tale of two diseases: exploring mechanisms linking diabetes mellitus with Alzheimer’s disease. J Alzheimers Dis, 2022, 85(2): 485-501. | 
				                                                        
				                                                            
				                                                                | 2. | Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci, 2020, 27(2): 736-750. | 
				                                                        
				                                                            
				                                                                | 3. | 刘敏, 谭丽阳, 张军, 等. 2 型糖尿病与阿尔茨海默病相关性机制的研究进展. 中国老年学杂志, 2019, 34(3): 746-749. | 
				                                                        
				                                                            
				                                                                | 4. | Michailidis M, Moraitou D, Tata DA, et al. Alzheimer’s disease as type 3 diabetes: common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int J Mol Sci, 2022, 23(5): 2687. | 
				                                                        
				                                                            
				                                                                | 5. | Takeishi J, Tatewaki Y, Nakase T, et al. Alzheimer’s disease and type 2 diabetes mellitus: the use of MCT oil and a ketogenic diet. Int J Mol Sci, 2021, 22(22): 12310. | 
				                                                        
				                                                            
				                                                                | 6. | Watson GS, Peskind ER, Asthana S, et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 2003, 60(12): 1899-1903. | 
				                                                        
				                                                            
				                                                                | 7. | 中华人民共和国国家药典委员会. 中国药典. 北京: 中国医药科技出版社, 2015: 154-155. | 
				                                                        
				                                                            
				                                                                | 8. | Ma D, Wang L, Jin Y, et al. Application of UHPLC fingerprints combined with chemical pattern recognition analysis in the differentiation of six rhodiola species. Molecules, 2021, 26(22): 6855. | 
				                                                        
				                                                            
				                                                                | 9. | Wang L, Wang Y, Yang W, et al. Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian (Rhodiola crenulata) in the treatment of COVID-19. J Med Microbiol, 2021, 70(7): 001374. | 
				                                                        
				                                                            
				                                                                | 10. | Huang LY, Yen IC, Tsai WC, et al. Rhodiola crenulata suppresses high glucose-induced matrix metalloproteinase expression and inflammatory responses by inhibiting ROS-related HMGB1-TLR4 signaling in endothelial cells. Am J Chin Med, 2020, 48(1): 91-105. | 
				                                                        
				                                                            
				                                                                | 11. | 王琦, 刘瑜琦. 中药红景天干预阿尔茨海默发病机制的研究进展. 中国中西医结合杂志, 2012, 32(12): 1706-1709. | 
				                                                        
				                                                            
				                                                                | 12. | Zhuang W, Yue L, Dang X, et al. Rosenroot (Rhodiola): potential applications in aging-related diseases. Aging Dis, 2019, 10(1): 134-146. | 
				                                                        
				                                                            
				                                                                | 13. | 马韫楠, 吴娅丽, 钟宛凌, 等. 基于网络药理学的地龙平喘作用机制研究. 中国现代中药, 2021, 23(10): 1737-1746. | 
				                                                        
				                                                            
				                                                                | 14. | Wang YY, Huang ZT, Yuan MH, et al. Role of hypoxia inducible factor-1α in Alzheimer’s disease. J Alzheimers Dis, 2021, 80(3): 949-961. | 
				                                                        
				                                                            
				                                                                | 15. | Mitroshina EV, Savyuk MO, Ponimaskin E, et al. Hypoxia-inducible factor (HIF) in ischemic stroke and neurodegenerative disease. Front Cell Dev Biol, 2021, 9: 703084. | 
				                                                        
				                                                            
				                                                                | 16. | Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin Exp Pharmacol Physiol, 2017, 44(3): 327-334. | 
				                                                        
				                                                            
				                                                                | 17. | Liu N, Cai X, Liu T, et al. Hypoxia-inducible factor-1α mediates the expression of mature β cell-disallowed genes in hypoxia-induced β cell dedifferentiation. Biochem Biophys Res Commun, 2020, 523(2): 382-388. | 
				                                                        
				                                                            
				                                                                | 18. | Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med, 2013, 19(3): 197-209. | 
				                                                        
				                                                            
				                                                                | 19. | Weigt C, Hertrampf T, Flenker U, et al. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J Steroid Biochem Mol Biol, 2015, 154: 12-22. | 
				                                                        
				                                                            
				                                                                | 20. | Martin L, Bouvet P, Chounlamountri N, et al. VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep, 2021, 35(6): 109121. | 
				                                                        
				                                                            
				                                                                | 21. | Yu WY, Sun W, Yu DJ, et al. Adipose-derived stem cells improve neovascularization in ischemic flaps in diabetic mellitus through HIF-1α/VEGF pathway. Eur Rev Med Pharmacol Sci, 2018, 22(1): 10-16. | 
				                                                        
				                                                            
				                                                                | 22. | 范羽丰, 谭蓉, 江铃. 大花红景天以生活方式对 27 例 2 型糖尿病患者的治疗评价. 中国现代药物应用, 2007, 1(6): 10-11. | 
				                                                        
				                                                            
				                                                                | 23. | Zhang X, Wang X, Hu X, et al. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ1-42) -induced cognitive deficits in rat models of Alzheimer’s disease. Phytomedicine, 2019, 57: 331-338. | 
				                                                        
				                                                            
				                                                                | 24. | Babaei P, Eyvani K, Kouhestani S. Sex-independent cognition improvement in response to kaempferol in the model of sporadic Alzheimer’s disease. Neurochem Res, 2021, 46(6): 1480-1486. | 
				                                                        
				                                                            
				                                                                | 25. | Zhang N, Xu H, Wang Y, et al. Protective mechanism of kaempferol against Aβ25-35-mediated apoptosis of pheochromocytoma (PC-12) cells through the ER/ERK/MAPK signalling pathway. Arch Med Sci, 2020, 17(2): 406-416. | 
				                                                        
				                                                            
				                                                                | 26. | 吴巧敏, 卢笑, 倪海祥. 山奈酚防治 2 型糖尿病研究进展. 浙江中西医结合杂志, 2017, 27(4): 344-349. | 
				                                                        
				                                                            
				                                                                | 27. | Xie C, Kang J, Li Z, et al. The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem, 2012, 23(9): 1184-1191. | 
				                                                        
				                                                            
				                                                                | 28. | Lee D, Imm JY. Antiobesity effect of tricin, a methylated cereal flavone, in high-fat-diet-induced obese mice. J Agric Food Chem, 2018, 66(38): 9989-9994. | 
				                                                        
				                                                            
				                                                                | 29. | Habtemariam S. Protective effects of caffeic acid and the Alzheimer’s brain: an update. Mini Rev Med Chem, 2017, 17(8): 667-674. | 
				                                                        
				                                                            
				                                                                | 30. | Nagao A, Kobayashi M, Koyasu S, et al. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci, 2019, 20(2): 238. | 
				                                                        
				                                                            
				                                                                | 31. | Gabryelska A, Karuga FF, Szmyd B, et al. HIF-1α as a mediator of insulin resistance, T2DM, and its complications: potential links with obstructive sleep apnea. Front Physiol, 2020, 11: 1035. | 
				                                                        
				                                                            
				                                                                | 32. | Viña J, Lloret A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis, 2010, 20(Suppl 2): S527-S533. | 
				                                                        
				                                                            
				                                                                | 33. | Chen LH, Fan YH, Kao PY, et al. Genetic polymorphisms in estrogen metabolic pathway associated with risks of Alzheimer’s disease: evidence from a southern Chinese population. J Am Geriatr Soc, 2017, 65(2): 332-339. | 
				                                                        
				                                                            
				                                                                | 34. | Santos RS, Frank AP, Fátima LA, et al. Activation of estrogen receptor alpha induces beiging of adipocytes. Mol Metab, 2018, 18: 51-59. | 
				                                                        
				                                                            
				                                                                | 35. | Singh Angom R, Wang Y, Wang E, et al. VEGF receptor-1 modulates amyloid β 1-42 oligomer-induced senescence in brain endothelial cells. FASEB J, 2019, 33(3): 4626-4637. | 
				                                                        
				                                                            
				                                                                | 36. | Tchaikovski V, Olieslagers S, Böhmer FD, et al. Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation, 2009, 120(2): 150-159. |