1. |
Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain, 2019, 160(1): 53-59.
|
2. |
Chen O, Donnelly CR, Ji RR. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol, 2020, 62: 17-25.
|
3. |
Gilron I, Baron R, Jensen T. Neuropathic pain: principles of diagnosis and treatment. Mayo Clin Proc, 2015, 90(4): 532-545.
|
4. |
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death. Cell Res, 2019, 29(5): 347-364.
|
5. |
Kowalski S, Karska J, Łapińska Z, et al. An overview of programmed cell death: apoptosis and pyroptosis-mechanisms, differences, and significance in organism physiology and pathophysiology. J Cell Biochem, 2023, 124(6): 765-784.
|
6. |
Vogeler S, Carboni S, Li X, et al. Phylogenetic analysis of the caspase family in bivalves: implications for programmed cell death, immune response and development. BMC Genomics, 2021, 22(1): 80.
|
7. |
Yang JK. Death effecter domain for the assembly of death-inducing signaling complex. Apoptosis, 2015, 20(2): 235-239.
|
8. |
Elena-Real CA, Díaz-Quintana A, González-Arzola K, et al. Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent apaf-1 inhibition. Cell Death Dis, 2018, 9(3): 365.
|
9. |
Erekat NS. Programmed cell death in cerebellar Purkinje neurons. J Integr Neurosci, 2022, 21(1): 30.
|
10. |
Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation, 2018, 15(1): 199.
|
11. |
Gradl G, Gaida S, Gierer P, et al. In vivo evidence for apoptosis, but not inflammation in the hindlimb muscle of neuropathic rats. Pain, 2004, 112(1/2): 121-130.
|
12. |
Sekiguchi M, Sekiguchi Y, Konno S, et al. Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J, 2009, 18(12): 1978-1985.
|
13. |
Kaeidi A, Esmaeili-Mahani S, Sheibani V, et al. Olive (Olea europaea L. ) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: in vitro and in vivo studies. J Ethnopharmacol, 2011, 136(1): 188-196.
|
14. |
Long Y, Liang F, Gao C, et al. Hyperbaric oxygen therapy reduces apoptosis after spinal cord injury in rats. Int J Clin Exp Med, 2014, 7(11): 4073-4081.
|
15. |
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis, 2021, 12(10): 949.
|
16. |
Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci, 2012, 13(6): 395-406.
|
17. |
Deng Y, Yang L, Xie Q, et al. Protein kinase A is involved in neuropathic pain by activating the p38MAPK pathway to mediate spinal cord cell apoptosis. Mediators Inflamm, 2020, 2020: 6420425.
|
18. |
Liao MF, Yeh SR, Lu KT, et al. Interactions between autophagy, proinflammatory cytokines, and apoptosis in neuropathic pain: granulocyte colony stimulating factor as a multipotent therapy in rats with chronic constriction injury. Biomedicines, 2021, 9(5): 542.
|
19. |
Yu Z, Jiang N, Su W, et al. Necroptosis: a novel pathway in neuroinflammation. Front Pharmacol, 2021, 12: 701564.
|
20. |
Ohsumi Y. Historical landmarks of autophagy research. Cell Res, 2014, 24(1): 9-23.
|
21. |
Liang YX, Wang NN, Zhang ZY, et al. Necrostatin-1 ameliorates peripheral nerve injury-induced neuropathic pain by inhibiting the RIP1/RIP3 pathway. Front Cell Neurosci, 2019, 13: 211.
|
22. |
Duan Y, Li Q, Zhou Y, et al. Activation of the TNF-α-necroptosis pathway in parvalbumin-expressing interneurons of the anterior cingulate cortex contributes to neuropathic pain. Int J Mol Sci, 2023, 24(20): 15454.
|
23. |
Dong Yang M, Ming Jie W, Hui Zhou L, et al. Spinal microglial M1 polarization contributes paclitaxel-induced neuropathic pain by triggering cells necroptosis. J Biochem Mol Toxicol, 2024, 38(3): e23669.
|
24. |
Binshtok AM, Wang H, Zimmermann K, et al. Nociceptors are interleukin-1beta sensors. J Neurosci, 2008, 28(52): 14062-14073.
|
25. |
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ, 2020, 27(3): 858-871.
|
26. |
Lahiri V, Hawkins WD, Klionsky DJ. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab, 2019, 29(4): 803-826.
|
27. |
Yamahara K, Yasuda M, Kume S, et al. The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res, 2013, 2013: 193757.
|
28. |
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress. Bull Cancer, 2021, 108(3): 304-322.
|
29. |
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135.
|
30. |
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, et al. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul, 2019, 72: 51-62.
|
31. |
Berliocchi L, Russo R, Maiarù M, et al. Autophagy impairment in a mouse model of neuropathic pain. Mol Pain, 2011, 7: 83.
|
32. |
Berliocchi L, Maiarù M, Varano GP, et al. Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain. Mol Pain, 2015, 11: 3.
|
33. |
Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol, 2012, 13(3): 255-263.
|
34. |
Feng T, Yin Q, Weng ZL, Zhang JC, et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(6): 830-837.
|
35. |
Feng XL, Deng HB, Wang ZG, et al. Suberoylanilide hydroxamic acid triggers autophagy by Influencing the mTOR pathway in the spinal dorsal horn in a rat neuropathic pain model. Neurochem Res, 2019, 44(2): 450-464.
|
36. |
Li J, Tian M, Hua T, et al. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy, 2021, 17(12): 4062-4082.
|
37. |
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol, 2018, 28(4): R170-R185.
|
38. |
Tong Y, Zhang XQ, Zhou HY. Chronic low back pain and sleep disturbance in adults in the US: the NHANES 2009-2010 study. Pain Physician, 2024, 27(2): E255-E262.
|
39. |
Liu Y, Kuai S, Ding M, et al. Dexmedetomidine and ketamine attenuated neuropathic pain related behaviors via STING pathway to induce ER-phagy. Front Synaptic Neurosci, 2022, 14: 891803.
|
40. |
Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther, 2021, 6(1): 128.
|
41. |
Downs KP, Nguyen H, Dorfleutner A, et al. An overview of the non-canonical inflammasome. Mol Aspects Med, 2020, 76: 100924.
|
42. |
Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
|
43. |
Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science, 2018, 362(6418): 1064-1069.
|
44. |
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671.
|
45. |
Chen R, Yin C, Fang J, et al. The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation, 2021, 18(1): 84.
|
46. |
Li Z, Zhu J, Wang Y. ADAR3 alleviated inflammation and pyroptosis of neuropathic pain by targeting NLRP3 in chronic constriction injury mice. Gene, 2021, 805: 145909.
|
47. |
Matikainen S, Nyman TA, Cypryk W. Function and regulation of noncanonical caspase-4/5/11 inflammasome. J Immunol, 2020, 204(12): 3063-3069.
|
48. |
Zhou Y, Wang C, Si J, et al. Melatonin up-regulates bone marrow mesenchymal stem cells osteogenic action but suppresses their mediated osteoclastogenesis via MT2 -inactivated NF-κB pathway. Br J Pharmacol, 2020, 177(9): 2106-2122.
|
49. |
Lee BL, Stowe IB, Gupta A, et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med, 2018, 215(9): 2279-2288.
|
50. |
Wu D, Zhang Y, Zhao C, et al. Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain. J Transl Med, 2022, 20(1): 583.
|
51. |
Santa Cruz Garcia AB, Schnur KP, Malik AB, et al. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat Commun, 2022, 13(1): 52.
|
52. |
Zhang D, Mao F, Wang S, et al. Role of transcription factor Nrf2 in pyroptosis in spinal cord injury by regulating GSDMD. Neurochem Res, 2023, 48(1): 172-187.
|
53. |
Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 2023, 19(7): 1982-1996.
|
54. |
Gao X, Gao LF, Zhang ZY, et al. miR-99b-3p/Mmp13 axis regulates NLRP3 inflammasome-dependent microglial pyroptosis and alleviates neuropathic pain via the promotion of autophagy. Int Immunopharmacol, 2024, 126: 111331.
|
55. |
Chen LP, Gui XD, Tian WD, et al. Botulinum toxin type A-targeted SPP1 contributes to neuropathic pain by the activation of microglia pyroptosis. World J Psychiatry, 2024, 14(8): 1254-1266.
|
56. |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
57. |
Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A, 2016, 113(34): E4966-E4975.
|
58. |
Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol, 2015, 10(7): 1604-1609.
|
59. |
Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis. Cell Death Differ, 2021, 28(4): 1135-1148.
|
60. |
Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784): 688-692.
|
61. |
Patil N, Walsh P, Carrabre K, et al. Regionally specific human pre-oligodendrocyte progenitor cells produce both oligodendrocytes and neurons after transplantation in a chronically injured spinal cord rat model after glial scar ablation. J Neurotrauma, 2021, 38(6): 777-788.
|
62. |
Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther, 2021, 6(1): 49.
|
63. |
Li L, Guo L, Gao R, et al. Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci, 2023, 15: 1206851.
|
64. |
Deng YF, Xiang P, Du JY, et al. Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund’s adjuvant-induced inflammatory pain. Neural Regen Res, 2023, 18(2): 456-462.
|
65. |
Zhang W, Yu S, Jiao B, et al. Vitamin D3 attenuates neuropathic pain via suppression of mitochondria-associated ferroptosis by inhibiting PKCα/NOX4 signaling pathway. CNS Neurosci Ther, 2024, 30(9): e70067.
|
66. |
Tang J, Chen Q, Xiang L, et al. TRIM28 fosters microglia ferroptosis via autophagy modulation to enhance neuropathic pain and neuroinflammation. Mol Neurobiol, 2024, 61(11): 9459-9477.
|
67. |
Guo Y, Du J, Xiao C, et al. Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur J Pain, 2021, 25(6): 1227-1240.
|