1. |
雷弋, 陈勃江, 曾莉, 等. 低剂量计算机断层成像在高危人群早期肺癌筛查中的价值研究. 四川大学学报(医学版), 2012, 43(4): 584-587.
|
2. |
Kim EE, Cenzer I, Graham FJ, et al. Time to benefit for lung cancer screening: a systematic review and survival meta-analysis. Am J Prev Med, 2025, 69(2): 107736.
|
3. |
石俊英, 王慧, 张斯佳, 等. LDCT、肿瘤相关自身抗体、TFPI-2基因甲基化联合检测对肺癌的早期诊断价值. 实用癌症杂志, 2023, 38(10): 1634-1637+1653.
|
4. |
Ji G, Bao T, Li Z, et al. Current lung cancer screening guidelines may miss high-risk population: a real-world study. BMC cancer, 2021, 21: 1-10.
|
5. |
Pinzani P, D’Argenio V, Del Re M, et al. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med, 2021, 59(7): 1181-1200.
|
6. |
Yousefi M, Ghaffari P, Nosrati R, et al. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer, Cell Oncol (Dordr), 2020, 43(1): 31-49.
|
7. |
Chang JW, Shih CL, Wang CL, et al, Transcriptomic analysis in liquid biopsy identifies circulating PCTAIRE-1 mRNA as a biomarker in NSCLC, Cancer Genomics Proteomics, 2020, 17(1): 91-100,.
|
8. |
Dong S, Wang Z, Zhang JT, et al, Circulating tumor DNA-guided de-escalation targeted therapy for advanced non-small cell lung cancer: a nonrandomized controlled trial, JAMA Oncol, 2024;10(7): 932-940,.
|
9. |
Desai A, Lovly CM. Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(3): 615-628.
|
10. |
Cortés-Hernández LE, Eslami-S Z, Attina A, et al. Proteomic profiling and functional analysis of extracellular vesicles from metastasis-competent circulating tumor cells in colon cancer. J Exp Clin Cancer Res. 2025;44(1): 102.
|
11. |
Alix-Panabières C, Pantel K. Advances in liquid biopsy: from exploration to practical application. Cancer Cell. 2025;43(2): 161-165.
|
12. |
Pang LL, Zhuang WT, Chen ZH, et al. Chemotherapy-based combination regimens for advanced EGFR-mutant NSCLC after EGFR-TKI failure: a network meta-analysis. J Natl Compr Canc Netw. 2025;23(4): e247092.
|
13. |
Zhang X, Yang D, Jiang Y, Huang L, Wang C, Tao D, et al. Comparison of radiation pneumonitis in lung Cancer patients treated with HT versus IMRT and circulating lymphocyte subsets as predicting risk factors. J Inflamm Res. 2021;14: 4205–4215.
|
14. |
Zhang B, Niu X, Zhang Q , et al. Circulating tumor DNA detection is correlated to histologic types in patients with early-stage non-smallcell lung cancer. Lung Cancer, 2019, 134: 108-116.
|
15. |
Zong Y, Li Q, Zhang F, et al. SDH5 depletion enhances radiosensitivity by regulating p53: a new method for noninvasive prediction of radiotherapy response. Theranostics, 2019, 9(22): 6380-6395.
|
16. |
Lee S, You J, Baek I, et al. Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection. Biosens Bioelectron, 2022, 210: 114295.
|
17. |
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature, 2019, 566(7745): 553-557.
|
18. |
Sun J, Lu Z, Fu W, Lu K, Gu X, Xu F, et al. Exosome-derived ADAM17 promotes liver metastasis in colorectal Cancer. Front Pharmacol, 2021, 12: 734351.
|
19. |
Labani-Motlagh A, Naseri S, Wenthe J, et al. Systemic immunity upon local oncolytic virotherapy armed with immunostimulatory genes may be supported by tumor-derived exosomes. Mol Ther Oncolytics, 2021, 20: 508-18.
|
20. |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancerassociated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer, 2021, 20(1): 131.
|
21. |
Medina JE, Annapragada AV, Lof P, et al. Early detection of ovarian cancer using cell-free DNA fragmentomes and protein biomarkers. Cancer Discov, 2025, 15(1): 105-118.
|
22. |
Bruhm DC, Vulpescu NA, Foda ZH, et al. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat Rev Cancer, 2025, 25(5): 341-358.
|
23. |
Jiang C, Zhang N, Hu X, Wang H. Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol Cancer, 2021, 20(1): 117.
|
24. |
Tian Y, Xu L, Li X, et al. SMARCA4: current status and future perspectives in non-small-cell lung cancer. Cancer Lett, 2023, 554: 216022.
|
25. |
Heeke S, Gay CM, Estecio MR, et al. Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer subtypes. Cancer Cell, 2024;42(2): 225-237. e5.
|
26. |
Lau SCM, Pan Y, Velcheti V, et al. Squamous cell lung cancer: current landscape and future therapeutic options. Cancer Cell, 2022, 40(11): 1279-1293.
|
27. |
Waarts MR, Stonestrom AJ, Park YC, et al. Targeting mutations in cancer. J Clin Invest, 2022, 132(8): e154943.
|
28. |
Yang M, Yu H, Feng H, et al. Enhancing the differential diagnosis of small pulmonary nodules: a comprehensive model integrating plasma methylation, protein biomarkers, and LDCT imaging features. J Transl Med, 2024, 22(1): 984.
|
29. |
Bhalla S, Yi S, Gerber DE. Emerging strategies in lung cancer screening: blood and beyond. Clin Chem, 2024, 70(1): 60-67.
|
30. |
Dai J, Qu T, Yin D, et al. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer. Cell Death Dis, 2023, 14(5): 312.
|
31. |
Chennamadhavuni A, Abushahin L, Jin N, et al. Risk factors and biomarkers for immune-related adverse events: a practical guide to identifying high-risk patients and rechallenging immune checkpoint inhibitors. Front Immunol, 2022, 13: 779691.
|
32. |
Les I, Martínez M, Pérez-Francisco I, et al. Predictive biomarkers for checkpoint inhibitor immune-related adverse events. Cancers (Basel), 2023, 15(5): 1629.
|
33. |
Zhao Y, O'Keefe CM, Hsieh K, et al. Multiplex digital methylation-specific PCR for noninvasive screening of lung cancer. Adv Sci (Weinh), 2023, 10(16): e2206518.
|
34. |
Yang Q, Wang M, Xu J, et al. LINC02159 promotes non-small cell lung cancer progression via ALYREF/YAP1 signaling. Mol Cancer, 2023, 22(1): 122.
|
35. |
Pei H, Dai Y, Yu Y, et al. The tumorigenic effect of lncRNA AFAP1-AS1 is mediated by translated peptide ATMLP under the control of m6A methylation. Adv Sci (Weinh), 2023, 10(13): e2300314.
|
36. |
罗汶鑫, 李为民. 肺癌的表观遗传学研究进展及其临床意义. 中国呼吸与危重监护杂志, 2018, 17(03): 313-318.
|
37. |
Long Y, Wang C, Wang T, et al. High performance exhaled breath biomarkers for diagnosis of lung cancer and potential biomarkers for classification of lung cancer. J Breath Res, 2021, 15(1): 016017.
|
38. |
陈情, 孙美秀, 李静, 等. 肺癌早诊呼吸分析研究现状与临床应用前景. 国际呼吸杂志, 2019, 39: 1800-1804.
|
39. |
谢少华, 向润, 谢天鹏等. 呼出气分析与肺癌诊断的研究现状及进展. 中国胸心血管外科临床杂志, 2022, 29(9): 1197-1209.
|
40. |
Yuan J, Zhou F, Guo Z, et al. HCformer: Hybrid CNN-Transformer for LDCT Image Denoising. J Digit Imaging, 2023, 36: 2290-2305.
|
41. |
Fonti R, Conson M, Del Vecchio S. PET/CT in radiation oncology. Semin Oncol, 2019, 46: 202-209.
|
42. |
Paydary K, Seraj SM, Zadeh MZ, et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol Imaging Biol, 2019, 21: 1-10.
|
43. |
Owens C, Hindocha S, Lee R, et al. The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives. Br J Radiol, 2023, 96: 20220339.
|
44. |
Allen BD, Schiebler ML, Sommer G, et al. Cost-effectiveness of lung MRI in lung cancer screening. Eur Radiol, 2020, 30: 1738-1746.
|
45. |
张新宇, 江峥增, 李春, 等. 支气管冲洗液辅助现场快速评估为阴性的肺癌进行表皮生长因子受体基因检测的临床应用价值. 中华病理学杂志, 2018, 47(12): 915-918.
|
46. |
李为民;赵爽;刘伦旭. 肺癌早期诊断方法及临床意义. 四川大学学报(医学版), 2017, 48(03): 331-335+326.
|
47. |
Vincent BD, Fraig M, Silvestri GA. A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest, 2007, 131(6): 1794-1799.
|
48. |
Iftikhar IH, Musani AI. Narrow-band imaging bronchoscopy in the detection of premalignant airway lesions: a meta-analysis of diagnostic test accuracy. Therapeutic advances in respiratory disease, 2015, 9(5): 207-216.
|
49. |
陈海;张仁泉. 电磁导航支气管镜在肺结节诊断及治疗中的应用研究进展. 安徽医学, 2023, 44(09): 1141-1143.
|
50. |
李镭;刘丹;张立;周萍;宋娟;程越;余何;赵爽;李为民. 6458例肺癌患者临床特征及诊疗现状分析. 四川大学学报(医学版), 2017, 48(03): 352-358.
|
51. |
Poletti V, Poletti G, Murer B, et al. Bronchoalveolar lavage in malignancy[C]//Seminars in Respiratory and Critical Care Medicine. Thieme Medical Publishers, 2007, 28(5): 534-545.
|
52. |
余何;李镭;刘丹;李为民. TTF-1、NapsinA、P63和CK5/6在肺癌组织的表达与分型诊断的价值. 四川大学学报(医学版), 2017, 48(3): 336-341.
|
53. |
人工智能在肺结节诊治中的应用专家共识(2022年版). 中国肺癌杂志, 2022, 25(4): 219-225.
|
54. |
Halder A, Dey D, Sadhu AK. Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging, 2020, 33(3): 655677.
|
55. |
Mao Y, Xu N, Wu Y, et al. Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images. Cell Rep Med, 2025, 6(3): 101988.
|
56. |
Deng Y, Yao Y, Wang Y, et al. An end-to-end deep learning method for mass spectrometry data analysis to reveal disease-specific metabolic profiles. Nat Commun, 2024, 15(1): 7136.
|
57. |
de Margerie-Mellon C, Chassagnon G. Artificial intelligence: a critical review of applications for lung nodule and lung cancer. Diagn Interv Imaging. 2023;104(1): 11-17.
|
58. |
Quanyang W, Yao H, Sicong W, et al. Artificial intelligence in lung cancer screening: detection, classification, prediction, and prognosis. Cancer Med, 2024, 13(7): e7140.
|