west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Biomaterial" 35 results
  • DEVELOPMENT OF OXYGEN-GENERATING MATERIALS IN TISSUE ENGINEERING RESEARCH

    ObjectiveTo summarize the developments of oxygen-generating materials as biomaterials and its applications in tissue engineering. MethodsThe recent literature on oxygen-generating materials as biomaterials was extensively reviewed, illustrating the properties and applications of oxygen-generating materials in tissue engineering. ResultsOxygen-generating materials as biomaterials have good biocompatibility and degradability. It supports the cell adhesion differentiation and growth. It is used for repairing liver, pancreas, myocardium, and so on. After modification, oxygen-generating materials can be extensively used in tissue engineering. ConclusionOxygen-generating materials is a good biomaterial, which has a great potential applications in tissue engineering.

    Release date: Export PDF Favorites Scan
  • PROGRESS OF BONE GRAFT SUBSTITUTE

    Objective To sum up the recent progress of common bone graft substitute and to forecast the possible directions for further research. Methods Recent original articles about investigation and appl ication for bone graft substitute were extensively reviewed. Several common bone graft substitutes were selected and expounded in different categories. Results Bone graft was an essential treatment in order to provide structural support, fill bone cavity and promote bone defect heal ing. The gold standard for bone graft was autograft which is subject to many restrictions. In recent years, theresearch and development of bone graft substitute have received publ ic attention. A very great progress has been made in the research and appl ication of allograft bones, synthetic bones and engineered bones, and some research results have been put into use for real products. Conclusion There still exist many problems in present bone graft substitutes. Combining various biomaterials and using the specific processing technology to develop a biomaterial which has the similar mechanical and chemical properties and physical structures to autograft so as to promote bone defect heal ing is the direction for future research.

    Release date:2016-09-01 09:18 Export PDF Favorites Scan
  • BIOMATERALS USED FOR REPARATIVE AND RECONSTRUCTIVE SURGERY

    Objective To investigate the currently-used biomaterials in reparative and reconstructive surgery and to clarify the relationship between the development of biomaterials and the progress of reparative and reconstructive surgery. Methods Based on the author’s many years’ scientific researches and combined with the literature available at home and abroad, the biomaterials used in the clinical practice, and their kinds and application fields were summarized. Results Based on the sufficient knowledge of the component structure of biomaterials and the patient’s pathological status, the matching biomaterials could be designed and developed. According to the analysis on some common defects occurring in the skin, bone, cartilage, vocalcord, nerve, and drum membrane, the methods of repairing the defects with biomaterials that we had developed, such as collagen, chitosan, and hyaluronate, achieved good results. Conclusion The rapid development of biomaterials can greatly promote progress of reparative and reconstructive surgery andthere exists a dependence relationship between the two. The related histological responses and the importance of biological estimation after implantation of biomaterials should be emphasized. 

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • APPLICATION RESEARCH ON DEXTRANBASED HYDROGEL AND ITS DRUG CONTROLLED RELEASE SYSTEM

    Objective To introduce the development of dextran-based hydrogel and its drug delivery system in drug sustained and/or controlled release, and to investigate their application in tissue engineering.Methods Related literature was extensively reviewed and comprehensively analyzed. Results In recent years, great progress was made in the studies of dextran-based hydrogels and study on dextran-based intelligent materials became an investigative hotspot especially in tissue engineering. Conclusion Dextran based hydrogel is considered to be a good potential material in field of drug delivery and tissue engineering. Endowed with new characteristics, a series of intelligent biomaterials can be derived from dextran-based hydrogels, which can be widely used in biomedicine. Further study should be done on the industrialization of its interrelated production.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
  • Application of medical biomaterials in prevention and treatment of tendon adhesion

    ObjectiveTo review the research progress of medicine biomaterials in prevention and treatment of adhesion after tendon injury, and to provide reference for clinical treatment.MethodsThe literature on the application of medical biomaterials in the prevention and treatment of tendon adhesions in recent years was reviewed, and the biological process, treatment methods, and current status of tendon adhesions were summarized.ResultsTendon adhesion as part of the healing process of the tendon is the biological response of the tendon to the injury and is also a common complication of joint dysfunction. Application of medical biomaterials can achieve better biological function of postoperative tendon by reducing the adhesion of peritendon tissues as far as possible without adversely affecting the tendon healing process.ConclusionThe use of medical biomaterials is conducive to reduce the adhesion of tendon after operation, and the appropriate anti-adhesion material should be selected according to the patients’ condition and surgical needs.

    Release date:2020-08-19 03:53 Export PDF Favorites Scan
  • STUDY ON BIOCOMPATIBILITY OF A NEW EXTRACELLULAR MATRIX MATERIAL WITH TISSUE ENGINEERING METHODS

    Objective To evaluate the biocompatibility of a new bone matrix material (NBM) composed of both organic and inorganic materials for bone tissue engineering. Methods Osteoblasts combined with NBM in vitro were cultured. The morphological characteristics was observed; cell proliferation, protein content and basic alkaline phosphatase(ALP) activity were measured. NBM combined with osteoblasts were implanted into the skeletal muscles of rabbits and the osteogenic potential of NBM was evaluated through contraat microscope, scanning electromicroscope and histological examination. In vitro osteoblasts could attach and proliferate well in the NBM, secreting lots of extracellular matrix; NBM did not cause the inhibition of proliferation and ALP activity of osteoblasts. While in vivo experiment of the NBM with osteoblasts showed that a large number of lymphacytes and phagocytes invading into the inner of the material in the rabbit skeletalmuscle were seen after 4 weeks of implantation and that no new bone formation was observed after 8 weeks. Conclusion This biocompat ibility difference between in vitro and in vivo may be due to the immunogenity of NBM which causes cellular immuno reaction so as to destroy the osteogenic environment. The immunoreaction between the host and the organic-inorganic composite materials in tissue engineering should be paid more attention to.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Research on a portable electrical impedance tomography system for evaluating blood compatibility of biomaterials

    The evaluation of blood compatibility of biomaterials is crucial for ensuring the clinical safety of implantable medical devices. To address the limitations of traditional testing methods in real-time monitoring and electrical property analysis, this study developed a portable electrical impedance tomography (EIT) system. The system uses a 16-electrode design, operates within a frequency range of 1 to 500 kHz, achieves a signal to noise ratio (SNR) of 69.54 dB at 50 kHz, and has a data collection speed of 20 frames per second. Experimental results show that the EIT system developed in this study is highly consistent with a microplate reader (R2=0.97) in detecting the hemolytic behavior of industrial-grade titanium (TA3) and titanium alloy—titanium 6 aluminum 4 vanadium (TC4) in anticoagulated bovine blood. Additionally, with the support of a multimodal image fusion Gauss-Newton one-step iterative algorithm, the system can accurately locate and monitor in real-time the dynamic changes in blood permeation and coagulation caused by TC4 in vivo. In conclusion, the EIT system developed in this study provides a new and effective method for evaluating the blood compatibility of biomaterials.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • ADVANCES IN TRACHEAL PROSTHESIS

    Objective To review the research advances of the tracheal prosthesis. Methods The articles concerned in recent years were extensively reviewed. Results There were still many arguments about the use of tracheal substitutes. Avariety of artificial trachea had been designed and assessed, but so far none of them had been satisfactory for clinical use. The failures were mainly due to their high mortality and incidence of complication such as prosthetic defluvium, granuloma formation, local infection, air leakage, anastomotic stenosis or obstruction. Conclusion The major causes of the poor effectiveness by the use of tracheal prosthesis are closely related to its biological compatibilities. The selected biomaterials and the design of prosthesis hold the key to a breakthrough in research and clinical use of tracheal prosthesis.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • ADVANCE IN STUDY OF ARTIFICIAL NERVE

    OBJECTIVE: To review the advance in materials of nerve conduit and Schwann cell transplantation for preparation of artificial nerve with tissue engineering technique. METHODS: Recent literatures about artificial nerve, nerve conduit and Schwann cell transplantation were extensively reviewed. RESULTS: Many biomaterials such as silicon, dacron, expanded polytetrafluoroethylene(ePTFE), polyester and chitin could be used as nerve conduits to repair nerve defect, the degradable biomaterials were better. The nerve conduit with intrinsic filaments could be used to bridge an extended gap in peripheral nerve. Purified and cultured Schwann cells were still bioactive. Axonal regeneration could be enhanced after implantation of Schwann cells into nerve conduit. CONCLUSION: The ideal artificial nerve is composed of three dimensional biodegradable nerve conduit and bioactive Schwann cells, Schwann cells can be distributed in nerve conduit just like Bünger’s band.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • STUDY STATUS OF COLLAGEN-BASED BIOMATERIALS IN DRUG RELEASE AND TISSUE ENGINEERING

    Objective To introduce the development of the collagen materials in drug release and tissue engineering. Methods Literature review and complex analysis were adopted. Results In recent years, some good progress hasbeen made in the studies of collagen, and study on collagen-based materials has become an investigative hotspot especially in tissue engineering. Some new collagen-based drug delivery andengineered materials have come into clinically-demonstrated moment, which willpromote their clinical applications in tissue repairs.ConclusionCollagen has been considered a good potential material in drug release, especially in the tissue-engineering field. To give collagen new characters we should pay more attention to grafting with different function branches through chemistry technique in the future work, except- moderate cross-linking treatment or commingling withother nature or synthesized macromolecules.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content