west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Curcumin" 17 results
  • Protective and Therapeutic Effects of Curcumin Combined with Rhodiola on Rats with Severe Acute Pancreatitis Associated Renal Injury

    ObjectiveTo investigate the effect of Curcumin combined with Rhodiola on rats with severe acute pancreatitis (SAP) associated renal injury and explore the possible mechanisms. MethodsA total of 24 rats were randomly divided into SAP with renal injury group (SAP group, n=8), Curcumin group (n=8), Curcumin combined with Rhodiola group (n=8).The SAP group was given 1.5 mL saline through intragastric administration before operation while the Curcumin group was fed with same amount of Curcumin diluent.The Curcumin combined with Rhodiola group was given 1.5 mL Curcumin diluent through intragastric administration and 6 g/kg Rhodiola diluent through intraperitoneal injection before operation.The pancreas and pancreatic tail-segment was dissociated and the head of pancreas were occluded in rats to make the model, blood vessel forceps was loosed after three hours.All the rats were sacrificed at 18 h after modeling.The levels of serum amylase, creatinine, blood urea nitrogen were detected and pathological changes of pancreas and the left kidney were observed under the light microscope.The cell apoptosis was analyzed using TUNEL staining.The serum levels of interleukin (IL)-1β, IL-6, and IL-10 among the three groups were detected by enzyme-linked immunosorbent assay.The expression of inducible nitric oxide synthase (iNOS) mRNA in the right kidney was detected by real-time polymerase chain reaction.The superoxide dismutase (SOD) activity of the renal tissue was determined by hydroxylamine method. ResultsCompared with the SAP group, the levels of serum amylase, creatinine, blood urea nitrogen, IL-1β, IL-6, the cell apoptosis index, and the expression of iNOS mRNA were significantly decreased, the serum level of IL-10 and the activity of SOD were significantly increased (P < 0.05), the pancreas and the kidney damaged more slightly in the Curcumin group and Curcumin combined with Rhodiola group.Compared with the Curcumin group, the above situations were more better in the Curcumin combined with Rhodiola group. ConclusionsCurcumin combined with Rhodiola has a better protective effect on SAP associated renal injury.It might be through inhibiting the expressions of IL-1β, IL-6, stimulating the expression of IL-10, down-regulating the expression of iNOS mRNA, and improving the activity of SOD.It could reduce the cell apoptosis and necrosis of the kidney and improve the ability of the kidney to tolerate hypoxia.

    Release date: Export PDF Favorites Scan
  • The Effect of Curcumin Loaded mPEG-PLGA Nanoparticles on Reversing Corticosteroid Resistance Induced by Cigarette Smoke Extract in Macrophages RAW264.7

    ObjectiveTo prepare curcumin loaded monomethoxyl poly(ethylene glycol)-poly(lactic-co-glycolicacid) (mPEG-PLGA) nanopaticles (CUR-NPs), investigate the effect of curcumin (CUR) and CUR-NPs on reversing corticosteroid resistance induced by cigarette smoke extract (CSE), and compare biological function between CUR and CUR-NPs in macrophages RAW264.7. MethodsmPEG-PLGA nanoparticles loaded with CUR were prepared via emulsion solvent evaporation.In lipopolysaccharide (LPS) stimulated macrophages RAW264.7, budesonide (BUD) was used to treat macrophages RAW264.7.In LPS and CSE stimulated macrophages RAW264.7, BUD (10-10-10-5 mol/L), CUR(10-10-10-5 mol/L), CUR(10-7 mol/L)+BUD(10-9-10-5 mol/L), CUR(10-9-10-5 mol/L)+BUD(10-7 mol/L), and CUR-NPs(10-9-10-5 mol/L)+BUD(10-7 mol/L) were respectively used to treat macrophages RAW264.7 activated.The level of IL-8 in cell culture supernatant was measured by ELISA.In CSE stimulated macrophages RAW264.7, CUR(10-7 and 10-6 mol/L) and CUR-NPs(10-7 and 10-6 mol/L) were used to treat macrophages RAW264.7.The mRNA level of HDAC2 was measured by real-time PCR, the protein level of HDAC2 was measured by Western blot.Cellular uptake of CUR and CUR-NPs in macrophages RAW264.7 was determined by cellular fluorescence intensity observed and detected by laser confocal microscopy imaging. ResultsThe morphology of CUR-NPs was spherical and the mean particle size was (356.4±146.6)nm.Compared with LPS stimulation, co-stimulation of LPS and CSE led to a significant decrease in the maximum inhibitory rate of BUD on IL-8 (P < 0.05) and a significant increase in the 50% inhibitory concentration (IC50) of BUD on IL-8 (P < 0.05).When using LPS+CSE to stimulate, compared with BUD (10-10-10-5 mol/L) group, the maximum inhibitory rate of BUD in CUR (10-7 mol/L)+BUD (10-9-10-5 mol/L) group on IL-8 was significantly higher (P < 0.05) and the IC50 of BUD decreased significantly (P < 0.05).When using LPS+CSE to stimulate, CUR and CUR-NPs in 10-9, 10-8 and 10-7 mol/L concentration, the inhibitory rate of CUR-NPs+BUD (10-7 mol/L) on IL-8 was significantly higher than that of CUR+BUD (10-7 mol/L) (P < 0.05). CSE stimulation induced a significant decrease in the mRNA and protein expression of HDAC2. Compared with CSE group, the mRNA and protein levels of HDAC2 of CUR(10-7 and 10-6 mol/L) group and CUR-NPs(10-7 and 10-6 mol/L) group were significantly higher (P < 0.05).In 10-7 mol/L concentration, the mRNA and protein levels of HDAC2 in CUR-NPs group were significantly higher than those in CUR group.In 10-7 mol/L concentration, cellular uptake of CUR in CUR-NPs was significantly higher than the native CUR. ConclusionsCUR and CUR-NPs can reverse the corticosteroid resistance induced by CSE.CUR-NPs can improve the cellular uptake of CUR.In the case of low concentration, CUR-NPs have more biological activity than CUR.

    Release date: Export PDF Favorites Scan
  • EFFECT OF CURCUMIN ON CALCITIONIN GENE RELATED PEPTIDE EXPRESSION AFTER SPINAL CORD INJURY IN RATS

    Objective To investigate the effect of curcumin on calcitionin gene related peptide (CGRP) expression after spinal cord injury (SCI) in rats. Methods A total of 200 rats, weighing 250-300 g, were randomly divided into 4 groups (n=50): sham-operation group, normal saline (NS) group, low-dose curcumin group (30 mg/kg), and high-dose curcumin group (100 mg/kg). In sham-operation group, only vertebral lamina excision was performed without SCI; the SCI model was established in the other 3 groups. At immediate after modeling, 30 mg/kg and 100 mg/kg curcumin were injected intraperitoneally in 2 curcumin groups, equivalent NS was given in NS group (30 mg/kg), but no treatment in sham-operation group. At 1, 3, 7, 14, and 21 days after operation, the motor neural function was evaluated by the inclined plane test and Basso-Beattie-Bresnahan (BBB) scores; immunohistochemical staining and Western blot assay were used to observe CGRP expression. Results BBB score and inclined plane test score of NS group, low-dose curcumin group, and high-dose curcumin group were significantly lower than those of sham-operation group at each time point (P lt; 0.05). BBB score of low-dose curcumin group and high-dose curcumin group was significantly higher than that of NS group at 3, 7, 14, and 21 days after SCI (P lt; 0.05), and the score of high-dose group was significantly higher than that of low-dose curcumin group at 7, 14, and 21 days after SCI (P lt; 0.05). Inclined plane test score of low-dose curcumin group and high-dose curcumin group was significantly higher than that of NS group at 7, 14, and 21 days after SCI (P lt; 0.05), and the score of high-dose curcumin group was significantly higher than that of low-dose curcumin group at 7, 14, and 21 days after SCI (P lt; 0.05). Immunohistochemical staining results showed that the CGRP positive cells of sham-operation group was significantly more than those of the other 3 groups, and the CGRP positive cells of high-dose curcumin group were significantly more than those of low-dose curcumin group at each time point (P lt; 0.05); the CGRP positive cells of low- and high-dose curcumin groups were significantly more than those of NS group at 3, 7, 14, and 21 days after SCI (P lt; 0.05). Western blot assay results showed that the CGRP protein expressed at each time point after SCI in sham-operation group; the CGRP protein expression gradually decrease with time passing in NS group; but the CGRP protein expression gradually increased with time passing in low- and high-dose curcumin groups, and reached the peak at 14 days, then maintained a high level. Conclusion After SCI in rats, 30 mg/kg curcumin can improve rats’ motor function, and 100 mg/kg curcumin effect is more obvious, especially in promoting the expression of CGRP. That may be the mechanism of protection of the nervous system.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • Effect and mechanism of curcumin on lipopolysaccharide-induced pulmonary macrophage inflammation and apoptosis

    ObjectiveTo investigate the effect of curcumin on lipopolysaccharide (LPS)-induced inflammation and apoptosis in alveolar macrophage via microRNA-132 (miR-132)/high mobility group protein B1 (HMGB1).MethodsThe cultured mouse alveolar macrophage line (RAW264.7 cells) were divided into the control group, the LPS group, the LPS+50 μmol/L curcumin group, and the LPS+100 μmol/L curcumin group. Forty-eight hours after drug treatment, the levels of miR-132/HMGB1, inflammatory mediator and apoptotic were detected. Secondly, the empty vector, synthetic miR-132 mimics and inhibitors were transfected into another cultured mouse alveolar macrophage line (RAW264.7 cells) to detect the inflammation and apoptosis of alveolar macrophage after transfection.ResultsCompared with the control group, in the LPS group, the apoptosis of alveolar macrophage, the levels of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α, and the expression of miR-132 increased, while the expression of HMGB1 decreased (P<0.05); compared with the LPS group, in the two curcumin groups, the apoptosis of alveolar macrophage, the levels of IL-6, IL-8 and TNF-α, and the expression of miR-132 decreased, while the expression of HMGB1 increased (P<0.05); and the greater the drug concentration, the more obvious the effect (P<0.05). In addition, up-regulation of miR-132 reduced the expression of HMGB1 in alveolar macrophage, increased inflammatory factor, and induced apoptosis in alveolar macrophage; however, down-regulation of miR-132 increased the expression of HMGB1 in alveolar macrophage, reduced inflammatory factor, and inhibited apoptosis in alveolar macrophage (P<0.05).ConclusionCurcumin could decrease LPS-induced inflammation and apoptosis in alveolar macrophage via decreasing miR-132 and increasing HMGB1.

    Release date:2020-03-25 09:12 Export PDF Favorites Scan
  • Effects of curcumin on the oxygeninduced retinal neovasularization

    Objective To investigate the effects and mechanism of curcumin on the retinal neovasularization in mice with oxygeninduced retinopathy (OIR). Methods A total of 72 C57BL/6J mice were divided into normal, OIR model, vehicle control [dimethyl sulphoxide (DMSO)], and curcumin group (100, 50, and 10 mg). The mice in normal group lived in normoxia condition; OIR model was set up according to standard methods in the literature. Five days after OIR establishment, the mice in curcumin group received an intraperitoneal (IP) injection of 0.1 ml curcumin (100, 50, and 10 mg), and the mice in DMSO group received an IP injection of 0.1 ml 1permil; DMSO. All of the mice were executed at the age of postnatal day 17 (P17) and the eyeballs were collected. Endothelial cell nuclei breaking through the internal limiting membrane were counted after stained with hematoxylin and eosin (HE). The expression of vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor receptor-2 (VEGFR-2), endostatin (ES), and phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK) in the retina in each group were measured by real-time polymerase chain reaction (RT-PCR) and Western blot methods.Results Compared with the normal group, retinal neovascularization was found in OIR model group (P<0.05). The number of endothelial cell nuclei was 46.00plusmn;16.00 in OIR model group and 0.17plusmn;0.41 in normal group (P<0.05). The expression of VEGF-A, ES, and p-p38MAPK in 100 mg curcumin group differed statistically from which in 50 and 10 mg curcumin group (P<0.05). The expression of VEGFR-2 was same in the three curcumin groups (P>0.05). Conclusion Curcumin can inhibit the formation of retinal neovascularization; the mechanism may be associated with inhibiting the expression of VEGFA and VEGFR-2, increasing the expression of ES, and inhibiting the p38MAPK signal transduction pathway.

    Release date:2016-09-02 05:41 Export PDF Favorites Scan
  • Therapeutic effect of thermosensitive hydrogel containing curcumin-vitamin E complex on radiation-induced oral mucositis in mice

    Objective To observe the therapeutic effect of thermosensitive hydrogel containing curcumin-vitamin E (VE) complex (hereinafter referred to as “curcumin-VE hydrogel”) on radiation-induced oral mucositis in mice. Methods Curcumin-VE hydrogel was prepared using the synthesized curcumin-VE complex as the carrier and poloxam as the substrate. The structure of curcumin-VE complex was characterized by Fourier transform infrared spectrometer, the microstructure of curcumin-VE hydrogel was determined by scanning electron microscope, and the gelation temperature was determined by rheometer, gel swelling and degradation were tested and gel adhesion was determined using a universal testing machine. Thirty healthy male BALB/C mice with specific pathogen free grade were randomly divided into three groups, with ten mice in each group. The radiation group and radiation+hydrogel group were modeled by a single high dose of radiation (25 Gy), while the control group had anesthesia but no radiation. The control group and radiation group were given daily feed and water 7 days after radiation. In addition to daily feed and water, the radiation+hydrogel group was given curcumin-VE hydrogel twice a day. The mice were sacreficed on the 8th day after radiation. The weight changes of each group were recorded after radiation. The ulceration area of tongue was measured by toluidine blue. The tongue of mouse were pathologically observed. The activities of superoxide dismutase, catalase (CAT), and glutathione peroxidase and the level of malondialdehyde in tongue tissue were determined. The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in tongue tissue were determined by enzyme linked immunosorbent assay. The distribution and positive expression of phosphorylated histone H2AX (γ-H2AX) and nuclear factor-erythroid 2-related factor 2 were determined by immunohistochemistry. Results Curcumin-VE hydrogel had a porous network structure and the gelation temperature was 30℃, the swelling rate was close to 300%, the gel degradation rate was up to 95% after 48 h, and the adhesion strength was 12.748 kPa. Compared with the radiation group, the weight of mice in the radiation+hydrogel group increased (P<0.05), the ulcer area decreased (P<0.05); the activity of CAT increased (P<0.05); the levels of TNF-α, IL-1β and IL-6 decreased (P<0.05); the expression of γ-H2AX was down-regulated (P<0.05). Conclusion Curcumin-VE hydrogel can delay or weaken the process of radiation-induced oral mucositis by reducing the DNA damage caused by radiation, inhibiting the production of reactive oxygen species, and effectively reducing the level of inflammation in tongue tissue.

    Release date:2025-01-23 08:44 Export PDF Favorites Scan
  • Protective Effects of Curcumin on Oxidative Stress-Induced Cell Injury in Human Fetal Lung Fibroblasts Co-cultured with A549 Cells and Its Mechanism

    Objective To investigate the effects of curcumin on oxidative stress in the co-culture system including human fetal lung fibroblasts and A549 cells, and discuss the potential and protective mechanism of the prophylactic effect of curcumin on pulmonary fibrosis. Methods The human fetal lung fibroblasts co-cultured with A549 cells were divided into five groups. The cells in the control group were cultured in DMEM without TGF-β1 or curcumin. The cells in the TGF-β1 group were cultured in DMEM containing 5 ng/mL TGF-β1 . In three TGF-β1 + cucurmin treatment groups, the cells were cultured in DMEM containing 5 ng/mL TGF-β1 and three different concentration of curcumin( 5, 10, 20 μmol /L, respectively) . ELISA was used to analyze the content of TNF-α. Serum level of MDA and SOD were tested by spectrophotometric analysis. Intracellular ROS production was detected by flow cytometry. NF-κB was measured by western blot. Results The serum MDA, intracellular ROS, the content of TNF-αand NF-κB protein expression in the TGF-β1 group were significantly increased while the activity of SOD was significantly decreased( P lt; 0. 01) , suggesting that the oxidative level of human fetal lung fibroblasts was obviously increased after TGF-β1 stimulation. After intervening by different concentration of curcumin, the serum MDA, intracellular ROS, content of TNF-αand NF-κB were significantly decreased while the activity of SOD was obviously increased( P lt;0.01) . Conclusion Low concentration of curcumin can reduce the oxidative level of human fetal lung fibroblasts co-cultured with A549 after TGF-β1 stimulation, and significantly increase the level of SOD, implying that curcumin may intervene pulmonary fibrosis by reduce oxidative level.

    Release date:2016-09-13 03:51 Export PDF Favorites Scan
  • Influence of curcumin in combination with cisplatin on the invasion and metastasis of lung cancer A549 cells and its possible mechanisms

    Objectives To explore the effects of curcumin and cisplatin on A549 lung cancer cell invasion and metastasis, and explore the influence of the two drugs on matrix metalloproteinase 9 (MMP-9) and E-cadherin protein. Methods MTT assay was performed to detect the effects of curcumin, cisplatin alone and the combination on A549 lung cancer cell proliferation. Transwell assay was performed to detect the effects of curcumin, cisplatin alone and the combination on the invasion and metastasis of lung cancer cells. Western blot was used to detect the protein expression of MMP-9 and E-cadherin. Results The proliferation inhibition of A549 lung cancer cell rate in 5, 10, 20, 40 μmol/L of curcumin was 6.50%±1.06%, 11.70%±0.88%, 22.97%±0.82%, 27.93%±0.94%, respectively. Compared with control group, the proliferation inhibition rates in four different curcumin groups were significantly increased (all P<0.01). The differences in the proliferation inhibition rates among four different curcumin groups were statistically significant (allP<0.05). The proliferation inhibition rates of A549 lung cancer cell in 1, 2, 4 mg/L of cisplatin were 7.12%±0.86%, 20.07%±1.14%, 26.88%±0.51%, respectively. Compared with control group, the proliferation inhibition rates in three different cisplatin groups were significantly increased (allP<0.01). The differences in the proliferation inhibition rates among three different cisplatin groups were statistically significant (allP<0.01). The proliferation inhibition rates of A549 lung cancer cell in curcumin (20 μmol/L) combined with cisplatin (1, 2, 4 mg/L respectively) were 28.37%±0.57%, 39.72%±0.64%, 46.27%±0.86%, respectively. Compared with control group and curcumin or cisplatin used alone, the proliferation inhibition rates of three combined groups were significantly increased (allP<0.01). The invasion inhibition rates of A549 lung cancer cell in curcumin group (20 μmol/L), cisplatin group (2 mg/L) and combined group (curcumin 20 μmol/L plus cisplatin 2 mg/L) were 38.62%±0.23%, 36.52%±0.33%, 63.78%±0.59%, respectively. Compared with control group and curcumin or cisplatin used alone, the invasion inhibition rates of combined group were significantly increased (allP<0.01). The protein grey values for curcumin group (20 μmol/L), cisplatin group (2 mg/L) and combined group (curcumin 20 μmol/L plus cisplatin 2 mg/L) were 0.768±0.047, 0.654±0.104, 0.684±0.008, 0.444±0.104 (MMP-9) and 0.603±0.170, 0.792±0.050, 0.784±0.045, 0.879±0.110 (E-cadherin), respectively. Compared with control group and curcumin or cisplatin used alone, the protein grey values of combined group were significantly different (allP<0.01 orP<0.05). Conclusions Curcumin and cisplatin combination can inhibit the invasion and metastasis of lung cancer A549 cells. Its mechanism may be related to downregulating MMP-9 and upregulating E-cadherin.

    Release date:2017-11-23 02:56 Export PDF Favorites Scan
  • Effects of calcium phosphate cement combined with hyaluronic acid/curcumin on the proliferation and osteogenesis of osteoblasts

    ObjectiveAfter using hyaluronic acid (HA) to modify curcumin (CUR), the effects of calcium phosphate cement (CPC) combined with HA/CUR on the proliferation and osteogenesis of osteoblasts were investigated.MethodsFirst, HA and CUR were esterified and covalently combined to prepare HA/CUR, and the characteristics were observed and the infrared spectrum was tested. Then, HA, CUR, and HA/CUR were mixed with CPC according to 5% (W/W) to prepare HA-CPC, CUR-CPC, and HA/CUR-CPC, respectively. Setting time detection, scanning electron microscope observation, injectable performance test, and compression strength test were conducted; and the CPC was used as a control. Osteoblasts were isolated and cultured from the skull of newborn Sprague Dawley rats, and the 2nd generation cells were cultured with the 4 types of bone cement, respectively. The effects of HA/CUR-CPC on the proliferation and osteogenesis of osteoblasts were estimated by the scanning electron microscopy observation, live/dead cell fluorescence staining, cell counting, osteopontin (OPN) immunofluorescence staining, alkaline phosphatase (ALP) staining,and alizarin red staining.ResultsInfrared spectroscopy test showed that HA and CUR successfully covalently combined. The HA/CUR-CPC group had no significant difference in initial setting time, final setting time, injectable rate, and compressive strength when compared with the other 3 groups (P>0.05); scanning electron microscope observation showed that HA/CUR was scattered on CPC surface. After co-culture of bone cement and osteoblasts, scanning electron microscopy observation showed that the osteoblasts, which had normal morphology and the growth characteristics of osteoblasts, clustered and adhered to HA/CUR-CPC. There was no significant difference in cell survival rate between HA/CUR-CPC group and other groups (P>0.05), and the number of cells significantly increased (P<0.05); the degrees of OPN immunofluorescence staining, ALP staining, and alizarin red staining were stronger than other groups.ConclusionHA/CUR-CPC has good biocompatibility and mechanical properties, which can promote the proliferation and osteogenesis of osteoblasts.

    Release date:2021-01-29 03:56 Export PDF Favorites Scan
  • The effects of Curcumin on the cellular apoptosis induced by high glucose in rat retinal vascular endothelial cells

    ObjectiveTo observe the effects of Curcumin on the cellular apoptosis of rat retinal vascular endothelial cells (RRVEC) induced by high glucose.MethodsGeneration 4 cultured RRVEC were used in this experiment, and identified with anti-vWF factor antibody by immunochemistry and immunofluorescence. The RRVEC were divided into control group (5.5 mmol/L glucose), high glucose group (30 mmol/L glucose), and treatment group (30 mmol/L glucose+30 μmol/L Curcumin), respectively. Flow cytometry was used to measure the cellular reactive oxygen species (ROS) level and apoptosis. The expression intensity and location of nuclear factor (NF)-κB p65 in the cells of the three groups were detected by immunochemistory. The expression of Bcl-2 and Bax protein was detected by Western blot test.ResultsImmunostaining showed that RRVEC were positive for vWF factor. The flow cytometry showed that the cellular ROS level in treatment group was higher than that in the control group (t=8.677, P=0.000), but less than that in the high glucose group (t=40.957, P=0.000). Compared with the high glucose group, the cellular ROS level in the treatment group was decreased significantly (t=6.568, P=0.000). The cellular apoptosis were significantly different among the three groups (F=325.137, P=0.000). Compared with the high glucose group, the cellular apoptosis in the treatment group was decreased significantly (t=12.818, P=0.000). Immunochemistry showed that NF-κB p65 was expressed strongly in the cellular nuclei and cytoplasm in the high glucose group than that in the control group and the treatment group with the significant differences (t=8.322, P=0.000). Western blot results demonstrated that compared with the control group, the expression of Bcl-2 of RRVEC and Bcl-2/Bax ratio decreased (t=4.362, 6.449; P=0.005, 0.001) and Bax increased (t=3.813, P=0.009)in the high glucose group, with statistically significant differences. Compared with the high glucose group, the expression of NF-κB and Bax decreased (t=2.577, 3.059; P=0.042, 0.022) and Bcl-2/Bax ratio increased significantly (t=3.831, P=0.009) in the treatment group.ConclusionCurcumin could suppress the cellular apoptosis of RRVEC induced by high glucose. The mechanism of Curcumin protecting RRVEC may be via regulating NF-κB signal pathway.

    Release date:2017-09-19 03:09 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content