Remarkable results have been realized by the U-Net network in the task of medical image segmentation. In recent years, many scholars have been researching the network and expanding its structure, such as improvement of encoder and decoder and improvement of skip connection. Based on the optimization of U-Net structure and its medical image segmentation techniques, this paper elucidates in the following: First, the paper elaborates on the application of U-Net in the field of medical image segmentation; Then, the paper summarizes the seven improvement mechanism of U-Net: dense connection mechanism, residual connection mechanism, multi-scale mechanism, ensemble mechanism, dilated mechanism, attention mechanism, and transformer mechanism; Finally, the paper states the ideas and methods on the U-Net structure improvement in a bid to provide a reference for later researches, which plays a significant part in advancing U-Net.
The accurate segmentation of breast ultrasound images is an important precondition for the lesion determination. The existing segmentation approaches embrace massive parameters, sluggish inference speed, and huge memory consumption. To tackle this problem, we propose T2KD Attention U-Net (dual-Teacher Knowledge Distillation Attention U-Net), a lightweight semantic segmentation method combined double-path joint distillation in breast ultrasound images. Primarily, we designed two teacher models to learn the fine-grained features from each class of images according to different feature representation and semantic information of benign and malignant breast lesions. Then we leveraged the joint distillation to train a lightweight student model. Finally, we constructed a novel weight balance loss to focus on the semantic feature of small objection, solving the unbalance problem of tumor and background. Specifically, the extensive experiments conducted on Dataset BUSI and Dataset B demonstrated that the T2KD Attention U-Net outperformed various knowledge distillation counterparts. Concretely, the accuracy, recall, Dice, and mIoU of proposed method were 95.26%, 86.23%, 85.09%, 83.59%and 77.78% on Dataset BUSI, respectively. And these performance indexes were 97.95%, 92.80%, 88.33%, 88.40% and 82.42% on Dataset B, respectively. Compared with other models, the performance of this model was significantly improved. Meanwhile, compared with the teacher model, the number, size, and complexity of student model were significantly reduced (2.2×106 vs. 106.1×106, 8.4 MB vs. 414 MB, 16.59 GFLOPs vs. 205.98 GFLOPs, respectively). Indeedy, the proposed model guarantees the performances while greatly decreasing the amount of computation, which provides a new method for the deployment of clinical medical scenarios.