west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WANG Yuchen" 2 results
  • Research on inversion method of intravascular blood flow velocity based on convolutional neural network

    Blood velocity inversion based on magnetoelectric effect is helpful for the development of daily monitoring of vascular stenosis, but the accuracy of blood velocity inversion and imaging resolution still need to be improved. Therefore, a convolutional neural network (CNN) based inversion imaging method for intravascular blood flow velocity was proposed in this paper. Firstly, unsupervised learning CNN is constructed to extract weight matrix representation information to preprocess voltage data. Then the preprocessing results are input to supervised learning CNN, and the blood flow velocity value is output by nonlinear mapping. Finally, angiographic images are obtained. In this paper, the validity of the proposed method is verified by constructing data set. The results show that the correlation coefficients of blood velocity inversion in vessel location and stenosis test are 0.884 4 and 0.972 1, respectively. The above research shows that the proposed method can effectively reduce the information loss during the inversion process and improve the inversion accuracy and imaging resolution, which is expected to assist clinical diagnosis.

    Release date: Export PDF Favorites Scan
  • Prediction method of paroxysmal atrial fibrillation based on multimodal feature fusion

    The risk prediction of paroxysmal atrial fibrillation (PAF) is a challenge in the field of biomedical engineering. This study integrated the advantages of machine learning feature engineering and end-to-end modeling of deep learning to propose a PAF risk prediction method based on multimodal feature fusion. Additionally, the study utilized four different feature selection methods and Pearson correlation analysis to determine the optimal multimodal feature set, and employed random forest for PAF risk assessment. The proposed method achieved accuracy of (92.3 ± 2.1)% and F1 score of (91.6 ± 2.9)% in a public dataset. In a clinical dataset, it achieved accuracy of (91.4 ± 2.0)% and F1 score of (90.8 ± 2.4)%. The method demonstrates generalization across multi-center datasets and holds promising clinical application prospects.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content