ObjectiveTo explore the rehabilitation effect of a domestic lower limb rehabilitation robot on patients with chronic stroke.MethodsChronic stroke patients who were hospitalized in the Department of Rehabilitation Medicine, the First Affiliated Hospital of Chongqing Medical University from September 2017 to August 2019 were collected. These patients underwent A3 robot-assisted gait training for 6 weeks. The differences of gait parameters, spatiotemporal asymmetries, total score and score of each item of Barthel Index were analyzed before and after 6 weeks training.ResultsA total of 15 patients were included, and 12 patients finally completed the trial. After the training, the gait parameters of patients with chronic stroke were significantly improved. Comparing with the baseline data, the cadence, stride length, velocity, step length of the affected leg, and step length of the healthy leg significantly increased (P<0.05) after the training; the stride time and the double-support time were significantly shorter (P<0.05); the stance phase of the affected leg was shortened (P<0.05); the swing phase of the affected leg was prolonged (P<0.05); While no significant difference in the stance phase or swing phase of the healthy leg was found (P>0.05). The spatiotemporal asymmetries had no significant change compared with the baseline data, including the ratio of step length [(1.26±0.23) vs. (1.13±0.10); t=1.816, P=0.097] and the ratio of swing phase of both lower limbs [1.14 (0.23) vs. 1.10 (0.38); Z=−0.153, P=0.878]. The activities of daily living were improved after the training, and the total score of Barthel Index [(72.92± 13.05) vs. (85.42±14.38); t=−6.966, P<0.001] was significantly higher than that before the training. Among the items, the scores of bathing [0.00 (3.75) vs. 5.00 (5.00); Z=−2.000, P=0.046], walking on the flat ground [10.00 (3.75) vs. 15.00 (5.00); Z=−3.000, P=0.003], and going up and down stairs [5.00 (5.00) vs. 7.50 (5.00), Z=−3.000, P=0.003] were higher than the baseline data, and the differences were statistically significant.ConclusionsA3 robot-assisted gait training can effectively improve the walking ability and activities of daily living of patients with chronic stroke but not the spatiotemporal asymmetries. Whether the spatiotemporal asymmetries can be improved by adjusting the robot equipment parameters needs to be further studied.
When people are walking, they will produce gait signals and different people will produce different gait signals. The research of the gait signal complexity is really of great significance for medicine. By calculating people's gait signal complexity, we can assess a person's health status and thus timely detect and diagnose diseases. In this study, the Jensen-Shannon divergence (JSD), the method of complexity analysis, was used to calculate the complexity of gait signal in the healthy elderly, healthy young people and patients with Parkinson's disease. Then we detected the experimental data by variance detection. The results showed that the difference among the complexity of the three gait signals was great. Through this research, we have got gait signal complexity range of patients with Parkinson's disease, the healthy elderly and healthy young people, respectively, which would provide an important basis for clinical diagnosis.
Due to the decline of motor ability and the impact of the diseases, abnormalities in gait is common in the elderly population, which will raise the risk of fall and cause serious injury. This study focuses on the analysis of the gait kinematics parameters of normal adults’ gait, aiming to investigate the characteristics of gait parameters in different age groups and to explore the role of gait parameters in motor function assessment and clinical diagnosis. Based on the gait data gained by electronic walkway, the relationship among the toe out angles and their correlation with age and gender etc. were quantitatively analyzed. The results show that most normal subjects walk with positive toe out angles, and the angles increase with age. Such changes are slow in the young and middle age groups. However, the elevations of the left out toe angle and the angles between the feet are statistically significant after entering elder age ( >60 years). The results also suggest that the angle between the feet is a kind of practical gait parameter for varying applications. This study concludes that feet angle analysis is potential to provide a convenient and quantitative tool for the assessment of lower limb motor ability and the diagnosis of knee joint diseases.
Utilized coefficient of friction (UCOF), which is calculated with ground reaction forces (GRF), is an effective factor to predict the possibility of slip. For researching the UCOF values of different turning strategies and then predicting the possibility of slip, this study selected 10 healthy young men to perform straight walking and 60° and 90° turning using two turning strategies (step turning and spin turning). ATMI force plate was used to collect the data of GRF, and then the UCOF values of different walking conditions were calculated. The study showed that difference of the medial-lateral force in different walking conditions was great; the slip possibility of turning was significantly greater than that of straight walking. For spin turn, turning angle had no significant effect on peak UCOF values. For step turn, the propulsive force decreased with the increase of turning angle, which caused a result that the peak UCOF values of 60° turn were significantly greater than that for 90° turn. This suggests that turning angle had little effect on possibility of slip of spin turning but great effect on that of step turning, and the greater angle led smaller possibility of slip.
Objective To explore the effects of fibulectomy on lower limb function and gait of adult patients through gait analysis, in order to provide guidance for clinical treatment. Methods A clinical data of 24 patients who underwent fibulectomy and met the selection criteria between January 2017 and December 2022 was retrospectively analyzed. There were 12 males and 12 females with an average age of 25 years (range, 18-68 years). The length of fibulectomy was 10-19 cm, with an average of 15 cm. The patients underwent routine rehabilitation training after operation. The occurrence of postoperative complications was recorded, the pain degree of surgical incision was evaluated by visual analogue scale (VAS) score, and the residual fibular bone was reviewed by imaging. A gait test system was used before operation and at 6 months after operation to collect gait data of healthy and affected sides under slow, medium, and fast velocity conditions, including gait parameters (foot rotation angle, step length, support phase, swing phase, gait line length, single support line, maximum force 1, maximum force 2) and the tripod area parameters (maximum pressure, time maximum force, and contact time of forefoot, midfoot, and hindfoot). Results All incisions healed by first intention after operation. All patients were followed up 1-5 years, with an average of 3 years. The great dorso-extension muscle strength decreased in 3 cases, and the sensory defects in the operative area and distal part occurred in 5 cases. The VAS scores of incisions were 0-6 (mean, 4) at 6 months after operation and 0-5 (mean, 2) at last follow-up. During follow-up, imaging review showed that 5 cases had osteoporotic changes of distal residual bone of the fibula, and the residual segment was shorter and more significant; 3 cases had new bone formation. The results of gait test showed that the gait parameters and the tripod area parameters under the three gait speeds were consistent. There was no significant difference in the gait parameters and the tripod area parameters between the healthy side and the affected side before operation (P>0.05). Compared with the healthy side, the foot rotation angle, the single support line, the maximum force 1, the maximum force 2, and the maximum pressures of the forefoot and midfoot of the affected side significantly decreased after operation (P<0.05), and the step length, the time maximum force of midfoot and hindfoot, and the contact time of the forefoot and midfoot significantly increased (P<0.05). Compared with preoperative conditions on the same side, the foot rotation angle, the gait line length of both sides significantly decreased (P<0.05), and the maximum pressures of the forefoot, midfoot, and hindfoot and the time maximum force of the midfoot significantly increased (P<0.05); the step length on healthy side significantly decreased, while the affected side significantly increased (P<0.05); the maximum force 1 and the maximum force 2 on the healthy side significantly increased, while the affected side significantly decreased (P<0.05); the single support line on the affected side significantly decreased (P<0.05). Conclusion Different degrees of clinical symptoms occurred, gait pattern changes, compensatory gait appears, gait stability decreases, and the risk of tumble increases in adult patients after partial fibulectomy. Therefore, it is recommended to walk slowly after fibulectomy.
Turning gait is very common in daily lives. However, study of turning is still limited. For researching the differences of the walking characteristics between straight gait and turning gait and between different turning strategies, and for analyzing the endopathic factor, this study selected 10 healthy young men to perform straight walking and 90° turning using two turning strategies (outside leg turning and inside leg turning). The Vicon capture system and plantar pressure capture system were used to measure gait parameters and plantar pressure parameters at the same time. The study showed that stride velocity reduced while stride time and proportion of stance time increased when turning was compared to straight walking. Inside leg turning strategy needed stronger muscle controlling and could promote turning, while outside leg turning strategy was more stable. This results will offer data for projecting gait of biped robot and provide reference value for walking rehabilitation training design and development of walking assistive equipments, etc.
Objective To investigate the changes of knee joint kinematics after anterior cruciate ligament (ACL) reconstruction assisted by personalized femoral positioner based on the apex of deep cartilage (ADC). Methods Between January 2021 and January 2022, a total of 40 patients with initial ACL rupture who met the selection criteria were randomly divided into the study group (using the personalized femoral positioner based on ADC design to assist ACL reconstruction) and the control group (not using the personalized femoral positioner to assist ACL reconstruction), with 20 patients in each group. Another 20 volunteers with normal knee were collected as a healthy group. There was no significant difference in gender, age, body mass index, and affected side between groups (P>0.05). Gait analysis was performed at 3, 6, and 12 months after operation using Opti _ Knee three-dimensional knee joint motion measurement and analysis system, and the 6 degrees of freedom (flexion and extension angle, varus and valgus angle, internal and external rotation angle, anteroposterior displacement, superior and inferior displacement, internal and external displacement) and motion cycle (maximum step length, minimum step length, and step frequency) of the knee joint were recorded. The patients’ data was compared to the data of healthy group. Results In the healthy group, the flexion and extension angle was (57.80±3.45)°, the varus and valgus angle was (10.54±1.05)°, the internal and external rotation angle was (13.02±1.66)°, and the anteroposterior displacement was (1.44±0.39) cm, the superior and inferior displacement was (0.86±0.20) cm, and the internal and external displacement was (1.38±0.39) cm. The maximum step length was (51.24±1.29) cm, the minimum step length was (45.69±2.28) cm, and the step frequency was (12.45±0.47) step/minute. Compared with the healthy group, the flexion and extension angles and internal and external rotation angles of the patients in the study group and the control group decreased at 3 months after operation, and the flexion and extension angles of the patients in the control group decreased at 6 months after operation, and the differences were significant (P<0.05); there was no significant difference in the other time points and other indicators when compared with healthy group (P>0.05). In the study group, the flexion and extension angles and internal and external rotation angles at 6 and 12 months after operation were significantly greater than those at 3 months after operation (P<0.05), while there was no significant difference in the other indicators at other time points (P>0.05). There was a significant difference in flexion and extension angle between the study group and the control group at 6 months after operation (P<0.05), but there was no significant difference of the indicators between the two groups at other time points (P>0.05).Conclusion Compared with conventional surgery, ACL reconstruction assisted by personalized femoral positioner based on ADC design can help patients achieve more satisfactory early postoperative kinematic results, and three-dimensional kinematic analysis can more objectively and dynamically evaluate the postoperative recovery of knee joint.
Aiming at comparing the pre-operative and post-operative gait characteristics and therefore establishing post-operative rehabilitation guidance for patients with end-stage knee osteoarthritis (KOA) merged with varus deformity, this study captured the level walking and sit-to-stand trials of 9 patients with 3-dimensional motion analysis system and after which musculoskeletal multi-body dynamic analysis was conducted. The study indicated that the average range of motion (ROM) of the proposed-surgical knee was 24.4°–57.6° and that of the non-surgical knee was 22.5°–71.5°. The knee ROM of control group during level walking was 7.2°–62.4°. When the unilateral KOA patients stood up from chair to complete the sit-to-stand movement, the ground reaction forces (GRFs) symmetry was 0.72–0.85, which means that the non-surgical limb bear the majority of body weight. The GRFs of the bilateral KOA patients were smallest during the sit-to-stand movement. The strategy that the non-surgical limb dominates in loading bearing taken by the unilateral KOA patients to cover most post-operative daily activities could increase the risk of KOA among non-surgical side joints as a result of long-term excessive loading-bearing. The study, on kinematics and biomechanical characteristics of patients with KOA merged with varus deformity, could help to understand the pathogenesis of KOA merged with varus deformity from the perspective of biomechanics and to provide strong clinic guidance for the pre-operative evaluation, prevention and post-operative recovery for patients.
Aiming at the gait instability phenomenon under disturbed conditions, domestic and foreign scholars have done some research works, but the relationship between the independent balancing act with the surface electromyographic and gait parameters in the process of instability has yet rarely been involved. In this study, using the gait analysis combined with electromyographic signal analysis, we investigated balance adjustment mechanism of joints and muscles of the human lower limb under the condition of walking on the level trail and after foot heel touching the ground and unexpected sliding. Studying 10 healthy subjects with the unified shoes, we acquired and analyzed the changing rule of the lower limb joint torque, joint angle, and the surface electromyographic of the main muscle groups involved in situations of dry or oid trails. Studies showed that when accident sliding happened, the body would increase ankle dorsiflexion torque moment, knee unbend torque and straight angle, and meanwhile increase the torque of hip extension, and timely adjust muscle activation time (Followed by activation of Tibialis anterior muscle→Rectus femoris→Gastrocnemius→Femoral biceps) to adjust the center of gravity, to maintain balance of the body, and to avoid falling down. The results of the research could be used to explore new ideas and to provide a certain reference value for preventing slip damage, rehabilitation training and development of lower limb walker.
The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait. The experiment was carried out on a slippery level ground walkway. Spatiotemporal gait parameter, kinematics and kinetics data as well as utilized coefficient of friction (UCOF) were compared between two conditions, i.e. with restriction of the ankle joint complex inversion-eversion and pronation-supination motions (FIXED) and without restriction (FREE). The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time. Furthermore, FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane. In FIXED condition, UCOF was significantly increased, which could lead to an increase of slip probability and a decrease of gait stability. Hence, in the design of a walker, bipedal robot or prosthetic, the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.