west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "FU Yunfa" 18 results
  • Technical maturity and bubble risks of brain–computer interface (BCI): Considerations from research to industrial translation

    Brain–computer interface (BCI) technology faces structural risks due to a misalignment between its technological maturity and industrialization expectations. This study used the Technology Readiness Level (TRL) framework to assess the status of major BCI paradigms—such as steady-state visual evoked potential (SSVEP), motor imagery, and P300—and found that they predominantly remained at TRL4 to TRL6, with few stable applications reaching TRL9. The analysis identified four interrelated sources of bubble risk: overly broad definitions of BCI, excessive focus on decoding performance, asynchronous translational progress, and imprecise terminology usage. These distortions have contributed to the misallocation of research resources and public misunderstanding. To foster the sustainable development of BCI, this paper advocated the establishment of a standardized TRL evaluation system, clearer terminological boundaries, stronger support for fundamental research, enhanced ethical oversight, and the implementation of inclusive and diversified governance mechanisms.

    Release date:2025-08-19 11:47 Export PDF Favorites Scan
  • Control of intelligent car based on electroencephalogram and neurofeedback

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy

    Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is a new-type human-computer interaction technique. To explore the separability of fNIRS signals in different motor imageries on the single limb, the study measured the fNIRS signals of 15 subjects (amateur football fans) during three different motor imageries of the right foot (passing, stopping and shooting). And the correlation coefficient of the HbO signal during different motor imageries was extracted as features for the input of a three-classification model based on support vector machines. The results found that the classification accuracy of the three motor imageries of the right foot was 78.89%±6.161%. The classification accuracy of the two-classification of motor imageries of the right foot, that is, passing and stopping, passing and shooting, and stopping and shooting was 85.17%±4.768%, 82.33%±6.011%, and 89.33%±6.713%, respectively. The results demonstrate that the fNIRS of different motor imageries of the single limb is separable, which is expected to add new control commands to fNIRS-BCI and also provide a new option for rehabilitation training and control peripherals for unilateral stroke patients. Besides, the study also confirms that the correlation coefficient can be used as an effective feature to classify different motor imageries.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
  • Research on fatigue recognition based on graph convolutional neural network and electroencephalogram signals

    Electroencephalogram (EEG) serves as an effective indicator of detecting fatigue driving. Utilizing the open accessible Shanghai Jiao Tong University Emotion Electroencephalography Dataset (SEED-VIG), driving states are divided into three categories including awake, tired and drowsy for investigation. Given the characteristics of mutual influence and interdependence among EEG channels, as well as the consistency of the graph convolutional neural network (GCNN) structure, we designed an adjacency matrix based on the Pearson correlation coefficients of EEG signals among channels and their positional relationships. Subsequently, we developed a GCNN for recognition. The experimental results show that the average classification accuracy of driving state categories for 20 subjects, from the SEED-VIG dataset under the smooth feature of differential entropy (DE) linear dynamic system is 91.66%. Moreover, the highest classification accuracy can reach 98.87%, and the average Kappa coefficient is 0.83. This work demonstrates the reliability of this method and provides a guideline for the research field of safe driving brain computer interface.

    Release date:2025-08-19 11:47 Export PDF Favorites Scan
  • Direct brain-controlled multi-robot cooperation task

    Brain control is a new control method. The traditional brain-controlled robot is mainly used to control a single robot to accomplish a specific task. However, the brain-controlled multi-robot cooperation (MRC) task is a new topic to be studied. This paper presents an experimental research which received the "Innovation Creative Award" in the brain-computer interface (BCI) brain-controlled robot contest at the World Robot Contest. Two effective brain switches were set: total control brain switch and transfer switch, and BCI based steady-state visual evoked potentials (SSVEP) was adopted to navigate a humanoid robot and a mechanical arm to complete the cooperation task. Control test of 10 subjects showed that the excellent SSVEP-BCI can be used to achieve the MRC task by appropriately setting up the brain switches. This study is expected to provide inspiration for the future practical brain-controlled MRC task system.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • A portable steady-state visual evoked potential brain-computer interface system for smart healthcare

    This paper realized a portable brain-computer interface (BCI) system tailored for smart healthcare. Through the decoding of steady-state visual evoked potential (SSVEP), this system can rapidly and accurately identify the intentions of subjects, thereby meeting the practical demands of daily medical scenarios. Firstly, an SSVEP stimulation interface and an electroencephalogram (EEG) signal acquisition software were designed, which enable the system to execute multi-target and multi-task operations while also incorporating data visualization functionality. Secondly, the EEG signals recorded from the occipital region were decomposed into eight sub-frequency bands using filter bank canonical correlation analysis (FBCCA). Subsequently, the similarity between each sub-band signal and the reference signals was computed to achieve efficient SSVEP decoding. Finally, 15 subjects were recruited to participate in the online evaluation of the system. The experimental results indicated that in real-world scenarios, the system achieved an average accuracy of 85.19% in identifying the intentions of the subjects, and an information transfer rate (ITR) of 37.52 bit/min. This system was awarded third prize in the Visual BCI Innovation Application Development competition at the 2024 World Robot Contest, validating its effectiveness. In conclusion, this study has developed a portable, multifunctional SSVEP online decoding system, providing an effective approach for human-computer interaction in smart healthcare.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • Ethics considerations on brain-computer interface technology

    The development and potential application of brain-computer interface (BCI) technology is closely related to the human brain, so that the ethical regulation of BCI has become an important issue attracting the consideration of society. Existing literatures have discussed the ethical norms of BCI technology from the perspectives of non-BCI developers and scientific ethics, while few discussions have been launched from the perspective of BCI developers. Therefore, there is a great need to study and discuss the ethical norms of BCI technology from the perspective of BCI developers. In this paper, we present the user-centered and non-harmful BCI technology ethics, and then discuss and look forward on them. This paper argues that human beings can cope with the ethical issues arising from BCI technology, and as BCI technology develops, its ethical norms will be improved continuously. It is expected that this paper can provide thoughts and references for the formulation of ethical norms related to BCI technology.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • Neurofeedback technology based on functional near infrared spectroscopy imaging and its applications

    Neurofeedback (NF) technology based on electroencephalogram (EEG) data or functional magnetic resonance imaging (fMRI) has been widely studied and applied. In contrast, functional near infrared spectroscopy (fNIRS) has become a new technique in NF research in recent years. fNIRS is a neuroimaging technology based on hemodynamics, which has the advantages of low cost, good portability and high spatial resolution, and is more suitable for use in natural environments. At present, there is a lack of comprehensive review on fNIRS-NF technology (fNIRS-NF) in China. In order to provide a reference for the research of fNIRS-NF technology, this paper first describes the principle, key technologies and applications of fNIRS-NF, and focuses on the application of fNIRS-NF. Finally, the future development trend of fNIRS-NF is prospected and summarized. In conclusion, this paper summarizes fNIRS-NF technology and its application, and concludes that fNIRS-NF technology has potential practicability in neurological diseases and related fields. fNIRS can be used as a good method for NF training. This paper is expected to provide reference information for the development of fNIRS-NF technology.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • Ethical considerations for medical applications of implantable brain-computer interfaces

    Implantable brain-computer interfaces (BCIs) have potentially important clinical applications due to the high spatial resolution and signal-to-noise ratio of electrodes that are closer to or implanted in the cerebral cortex. However, the surgery and electrodes of implantable BCIs carry safety risks of brain tissue damage, and their medical applications face ethical challenges, with little literature to date systematically considering ethical norms for the medical applications of implantable BCIs. In order to promote the clinical translation of this type of BCI, we considered the ethics of practice for the medical application of implantable BCIs, including: reducing the risk of brain tissue damage from implantable BCI surgery and electrodes, providing patients with customized and personalized implantable BCI treatments, ensuring multidisciplinary collaboration in the clinical application of implantable BCIs, and the responsible use of implantable BCIs, among others. It is expected that this article will provide thoughts and references for the research and development of ethics of the medical application of implantable BCI.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • An emerging major: brain-computer interface major

    Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major—BCI major—has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content